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Figure 1. We present DIO, a world model that learns unsupervised 4D occupancy and flow (a, c) and can be decomposed into instance
occupancy (b) as well as transfered to downstream tasks like LiDAR point cloud forecasting (d).

Abstract

We present DIO, a flexible world model that can estimate
the scene occupancy-flow from a sparse set of LiDAR ob-
servations, and decompose it into individual instances. DIO
can not only complete instance shapes at the present time,
but also forecast their occupancy-flow evolution over a fu-
ture horizon. Thanks to its flexible prompt representation,
DIO can take instance prompts from off-the-shelf models
like 3D detectors, achieving state-of-the-art performance in
the task of 4D semantic occupancy completion and fore-
casting on the Argoverse 2 dataset. Moreover, our world
model can easily and effectively be transferred to down-
stream tasks like LiDAR point cloud forecasting, ranking
first compared to all baselines in the Argoverse 4D occu-
pancy forecasting challenge.

1 Introduction
Planning a safe motion requires robots, such as self-driving
vehicles (SDVs), to have an accurate understanding of the
world. An important challenge of perception systems is
their ability to understand individual objects and their shape
when dealing with sparse and noisy observations. More-
over, scene completion at the current time is not sufficient,
as a robot also needs a precise understanding of the evolu-
tion of the 4D scene into the future through a world model
to plan a safe trajectory. These systems can benefit from

∗ Denotes equal contribution. † Work done while at Waabi.

reasoning about instances to get a complete understanding
of the scene, allowing a more fine-grained understanding of
the interactions between actors. For instance, if a planned
trajectory overlaps with forecasted future occupancy, it is
important to understand where that occupancy came from
to reason about who has the right-of-way.

Two dominant groups of methods have emerged as inter-
pretable world models for autonomy: Instance-based meth-
ods [1–10] first detect a discrete set of objects in the scene,
followed by forecasts of possible future trajectories. While
instance information can benefit motion planning, this ap-
proach leads to information bottlenecks (e.g., a finite set
of predicted trajectories). Bird’s-eye-view (BEV) semantic
occupancy fields [11–17] are more suitable to represent fu-
ture motion uncertainties [12, 18] but lack instance informa-
tion that reduces expressivity and intepretability. Moreover,
both these approaches are often supervised exclusively with
bounding box labels, which leads to a poor approximation
of the true object geometry, and the BEV assumption may
not hold. This highlights the need for a 4D (x, y, z, t) un-
derstanding of the scene.

Recent works [18, 19] propose unsupervised 4D occu-
pancy world models, allowing training on a vast amount of
unlabeled LiDAR data, better capturing the true geometry,
and enabling fine-tuning on specific tasks such as LiDAR
point cloud forecasting and semantic occupancy perception
and prediction. However, these models still face challenges
with (1) decomposing dynamic scenes, (2) predicting oc-
cupancy of fine-grained structures, and (3) accurately fore-
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casting, all of which are relevant for safe motion planning.
To address these limitations, we propose DIO, a 4D

occupancy-flow world model that exploits unsupervised Li-
DAR data together with object bounding box labels as su-
pervision. DIO is able to decompose the scene into in-
stances, while improving on both the fine-grained details
and the forecasting abilities of previous models. As shown
in Fig. 1, this model can predict 4D scene occupancy and
flow (3D + time), decompose it into individual objects,
and can also be transferred to the task of LiDAR point
cloud forecasting. In contrast to many scene completion
approaches [20, 21], this method requires only 3D bound-
ing boxes labels to predict instances that approximate the
true geometry. We further propose a novel method allow-
ing for the decomposition of 4D scene occupancy and flow
into specific instances while maintaining the ability to pre-
dict scene occupancy. DIO accomplishes this by accepting
source points s = (xs, ys, zs) that allow the user to indi-
cate the object of interest in a flexible way. In summary, our
primary contributions are as follows:

Contributions: 1) DIO is the first method to be able to
decompose scene occupancy using source point prompt-
ing into individual instances, enabling scene occupancy, in-
stance occupancy, and unsupervised flow prediction. 2) It
leverages both LiDAR and bounding box labels for super-
vision to predict instance-level occupancy and 3) our new
sparse architecture achieves state-of-the-art results in differ-
ent tasks (LiDAR point cloud and 4D geometric occupancy
completion and forecasting) on the Argoverse2 dataset.

2 Related Work
Spatial-Temporal Occupancy Prediction: This task in-
volves predicting the probability of a specific area in space
being occupied using sensory data such as LiDAR [12, 13,
16], RADAR [22, 23], and camera inputs [14, 15, 24, 25].
To tackle the downsides of bounding box and BEV assump-
tions, various works [26–29] focus on predicting the 4D se-
mantic occupancy. However, many of these approaches rely
on point cloud semantic segmentation labels [30], which
are expensive, and only consider a predefined set of classes,
which can limit an autonomous system’s robustness to new
or unusual objects. To tackle these limitations, recent works
[18, 19] have instead proposed predicting 4D geometric oc-
cupancy, relying solely on LiDAR self-supervision.

Most works [19, 26–29] predict occupancy in space and
future time as a 4D voxel grid, which is inefficient in terms
of memory and runtime, leading to low resolution outputs
with quantization errors. In contrast, UnO [18] proposes an
implicit occupancy model, allowing it to efficiently query
occupancy at continuous (x, y, z, t) points of interest. How-
ever, the predictions of this work still struggle to capture
fine-grained structures as it encodes the scene into a single
resolution BEV feature map.

LiDAR Point Cloud Forecasting: LiDAR point cloud
forecasting emerged as a way to measure the capabilities
of world models trained on large unlabeled datasets. While
some methods [31–34] directly predict the point clouds,
others first predicts a 4D occupancy representation [18, 19]
followed by the LiDAR ray depth given the sensor intrinsics
and future extrinsics. Our work builds on the latter and due
to the decomposed occupancy output also allows us to com-
plete and forecast LiDAR point clouds for specific objects
of interest in higher detail.

Scene Completion: Scene completion [35–38] refers to
the task of completing the geometry of a scene given noisy
and sparse sensor measurements. Semantic scene comple-
tion methods [20, 39–41] additionally infer the semantic
classes of each occupied area, and panoptic scene com-
pletion [20, 21, 42] extends this task to also understand
instances. To obtain a fine-grained understanding of in-
stances, works in this family often rely on labeled data such
as CAD models [43, 44], meshes [45, 46], or semantic point
cloud labels [21, 42], which are costly to obtain. While
panoptic scene completion has similarities to our work,
DIO is not only able to complete the scene and instances
occupancy at the present time, but also forecasts its future
evolution. Moreover, our method only requires unlabeled
point clouds and bounding box labels which are cheaper to
obtain than the above-mentioned labels.

3 Decomposable 4D Occupancy-Flow
We present DIO, a model that estimates the precise full
3D shape of objects and forecasts their motion from sparse
and noisy LiDAR observations. We develop a model that
can be prompted for occupancy and flow of a particular in-
stance at a particular spatial-temporal 4D point. This en-
ables us to estimate occupancy in an implicit manner, with
the advantages of infinite continuous resolution, efficient
querying constrained to regions of interests, and most im-
portantly, leveraging large amounts of point cloud data for
training. Aside from point cloud sensor inputs and local-
ized ego poses –which are both the norm in modern self-
driving platforms [34, 47]– the model requires an indicator,
or ”prompt”, to identify which instance it should predict in
the 4D space, as inspired by Segment Anything [48]. In
a real application, these instance prompts can be obtained
through many existing methods that estimate the centroid
locations of objects in the scene (e.g., 3D object detectors
[49–53]), and can be combined with methods highlighting
the points of interest in a scene like a planner [54]. More
details on the theoretical efficiency of these combined meth-
ods are in the supplementary.

3.1. Decomposable Occupancy-Flow Task

To decompose the scene, DIO requires a prompt made of a
source point s and a query point q. The source point rep-
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Figure 2. DIO predicts the probability o that the object currently occupying s will occupy (xq, yq, zq) at time tq , and in that event, the
most likely flow vector f . The occupancy and flow are visualized by overlaying a grid of query points for object centroid (as source point).

resents the assumed 3D location in the current frame of the
instance we want to predict. The query point indicates the
4D point in space and time where we want to know if it
will be occupied by the instance or not. To be more precise
about the task, it is worth distinguishing different cases. If
the source point lies in a foreground instance (e.g., a ve-
hicle) we want to predict the 4D occupancy-flow for that
specific instance (i.e., 1 for query points inside the instance
and 0 otherwise). If the source point lies in free-space or
background, we would like to predict zero occupancy for
any query point. For instance, if a detector is used to pro-
pose source points, it might have false positive detections,
and in that case we would like to predict no occupancy.

More formally, given a tuple (X,p) composed of past
sensor data X including the most recent observation at time
t = t0, a prompt p = (q, s) composed of a 4D query point
q = (qx, qy, qz, qt), and a 3D source point s = (sx, sy, sz),
DIO predicts the probability o that the instance occupying s
at t = t0 will occupy (qx, qy, qz) at qt (i.e., qt − t0 seconds
into the future), as well its 3D flow f = (fx, fy, fz). In
other words, the goal is to learn a model fθ parametrized by
θ such that

o, f = fθ(X,p). (1)

Finally, we would like the ability to also predict the over-
all scene occupancy similar to previous works [18, 19],
including background and all foreground instances. We
achieve this by prompting with an empty source point s =
∅. In this case, we expect occupancy for any query point
that belongs to either an instance (e.g., vehicle, person, etc.)
or to the background (e.g., buildings, trees, ground, etc.).
We define the results of prompting with a non-empty 3D
source point as instance occupancy, and scene occupancy
when prompting with an empty source point.

3.2. Decomposable Occupancy Model

We design a scene encoder that is composed of a sparse 3D
backbone and a dense BEV neck to extract multi-resolution
3D sparse feature volumes as well as a dense BEV feature
map. Given a prompt, the decoder predicts the occupancy

and flow for each query point corresponding to the instance
—or whole scene— described by the source point. We refer
the reader to Figure 2 for an overview.

Scene Encoder: We leverage the 3D sparse backbone of
SECOND [55] to encode multiple sweeps (360° scans) of
past and current LiDAR data. Through a series of sparsity-
preserving sub-manifold 3D convolutions [56, 57], this
backbone gradually downsamples the sparse feature vol-
ume. Throughout this downsampling process, we obtain
feature volumes with resolution downsampled by 2x, 4x,
8x, and 16x with respect to the input voxels, which we refer
to as V2x, V4x, V8x, and V16x respectively. These sparse
feature volumes capture 3D details of the scene precisely,
but they have a limited receptive field as features do not
propagate into empty voxels, and thus are not well suited for
capturing the full scene context. To tackle this, we propose
using a deformable spatial attention neck to extract a BEV
dense feature map with a large receptive field from V16x.
This module first densifies the sparse features by padding
any voxel without sparse features with zeros, concatenates
the features along the height dimension, and runs a mul-
tihead spatial attention module [58] over the BEV feature
map. Finally, we pass it through a series of BEV convolu-
tion blocks to obtain a dense BEV feature map M16x, and
denote the transformation from V16x to M16x as Densify
in Fig. 2. This approach exploits the sparsity inherent in
the point cloud data for efficiency at high resolutions while
extracting high-receptive field features at a low resolution
where dense convolutions are affordable. The output are the
concatenated scene features Z = [V2x,V4x,V8x,M16x].

Decomposable Occupancy-Flow Decoder: The decoder
predicts occupancy and flow by attending to the scene fea-
tures Z at multiple locations: the query point q, the source
point s as well as at multiple learned offsets from the query
point q + ∆q. Together with embeddings of q and s, this
is sufficient context for the decoder to perform this task. In
more detail, we leverage a Multi-Scale Interpolation (MSI)
module to perform tri-linear interpolations at (x, y, z) for
V2x, V4x, V8x and a bi-linear interpolation at (x, y) for
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M16x, and concatenate all interpolated feature vectors. We
use this MSI to interpolate the multi-resolution scene fea-
tures at q and s first. Then, with those features concatenated
with the positional embeddings, we predict 4H 3D offsets
∆q through an MLP to be used in Multi-Head Deformable
Attention [58]. This module interpolates features at the
4 resolutions with MSI, and then performs cross-attention
over the H heads at each resolution. Finally, the resulting
features are passed through another MLP, which outputs the
occupancy probability and flow vector. Additional details
can be found in the supplementary.

3.3. Training

Our goal is to learn fine-grained shape of objects and to
be able to decompose them into separate instances. Scene-
wise LiDAR unsupervised training [18] provides detailed
occupancy labels but does not include any instance infor-
mation. On the other hand, labelled boxes identify separate
objects, but their shapes are very coarse since constrained
to 3D boxes. We aim to combine the advantages of both by
prompting DIO to reconstruct occupancy inside specific in-
stance boxes. Furthermore, we showcase the ability of this
method to generalize to new instances by always training
only on a subset of the labelled classes, and evaluating the
performance on the held-out remaining labels.

The choice of training prompts —i.e., the combination
of source points and query points— is crucial to the perfor-
mance of our model. It is important to find a good balance
between positive and negative queries (i.e., occupied vs. un-
occupied). To achieve decomposable occupancy, we use a
diverse set of source points (inside instances, outside but
close to instances, empty). Figure 3 illustrates the main
types of prompts we utilize, and the associated positive vs.
negative labels. The notation for prompts is as follows: A
set of prompts P is the combination of two ordered sets of
equal length: query points Q and source points S. If the
set of prompts is to be supervised as positive (occupied) we
will denote it as P+, and if it will be supervised as negative
(unoccupied) with P−.

Scene Occupancy Prompts: We take inspiration from
4D-Occ [19] and UnO [18] to leverage LiDAR rays, and
the implicit information they contain about which regions
are empty or occupied as our self-supervision. Since
the SDV is moving, the position of the LiDAR sensor
l(t) = (lx(t), ly(t), lz(t)) is a function of time t. We de-
note a LiDAR return (a.k.a. LiDAR point) with emission
time tr as r = (rx, ry, rz). Following UnO [18], we as-
sume that the ray segment R− connecting l(tr) to r is not
occupied, and that the small segment R+ of length δ im-
mediately past r and in the same direction is occupied. We
then uniformly sample the same number points along each
ray from the positive R+ and negative R− portions of the
ray, obtaining two sets of query points Q−

scene and Q+
scene

with |Q−
scene| = |Q+

scene|. For all these query points, DIO
is prompted with an empty source point (s = ∅), yielding
P−
scene and P+

scene These prompts are illustrated in Fig. 3(a).

Instance Occupancy Prompts: To train the decompos-
able occupancy, we assume the existence of I instance la-
bels, each defined by a bounding box bi with 3D centroid,
length, width, height, and heading information. For each
instance i ∈ 1, . . . , I , we generate a set of positive instance
prompts P+

bi
= {(q, ŝi) | q ∈ Q+

scene ∧q ⊂ bi} from posi-
tive scene prompts that lie inside (⊂) an instance bounding
box. Here, ŝi is a noisy source point sampled uniformly to
be within bi. This noise makes the method robust against
imperfect source points during evaluation (e.g., those com-
ing from a 3D instance detector). Doing this for every in-
stance, we obtain positive prompts P+

obj =
⋃

i P
+
bi

. These
positive prompts are illustrated in Fig. 3(b) with green cir-
cles. For negatives, we want to associate different source
points depending if the query point lies within an instance
bounding box or not. More precisely,

P−
obj =

{
(q, ŝi) if q ⊂ bi∈1...I

(q, ŝj∼1...I) otherwise

∣∣∣∣ q ∈ Q−
scene

}
.

(2)

By assigning a noisy source point from a random instance j
to negative query points that lie outside bounding boxes,
we prevent the model from learning a bias that when a
source point is provided the query point is likely occupied.
There are also positive scene prompts that hit the back-
ground (see green points in tree in Fig. 3). However, for
training the instance occupancy, we would like to supervise
those as negatives. This gives us one more set of prompts
P−
bg = {(q, ŝj∼1...I) | q ∈ Q+

scene ∧ q ̸⊂ bi∀i}. All these
negative prompts are illustrated in Fig. 3(b) with red circles.

For each instance, we also add hard negative
prompts that lie between the original box bi and
a scaled-up box b′

i. In other words, P−
box =⋃

i {(q, ŝi) | q ∼ U(b′
i) ∧ q ⊂ b′

i\bi}. The rationale be-
hind this is the generation of negative supervision for query
points for one instance (e.g., i = 1) inside the true shape of
another nearby instance (e.g., i = 2) as the scaled-up box
of the former might intersect with the latter, encouraging
proper instance separation. These points are illustrated in
Fig. 3(b) with orange diamonds.

Finally, to ensure the model predicts no occupancy when
queried with a source point in free-space we add another set
of negative query points during training. Using the LiDAR
rays, we randomly sample K source points in the free-space
of the current time step R−

t=t0 and sample M associated
query points to each source point with a gaussian ball.

P−
rand =

{(
qk,m ∼ N (sk, σ

2I), sk
)
| sk ∼ R−

t=t0

}K,M

k=1,m=1

(3)
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(c) Decomposed occupancy with source point in free-space

(b) Decomposed occupancy with source point in object

(a) Scene occupancy (empty source point)

Legend: Ray-based negative query point

Ray-based positive query point
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Object bounding box

Gaussian-based  negative query point
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Figure 3. Prompt generation during training.

Loss Function: We train DIO’s parameters θ using a lin-
ear combination of occupancy and flow consistency losses:

L = Locc + λLflow. (4)

Recall that o, f = fθ(X,q, s) denotes the occupancy proba-
bility and flow outputs at a query point q given source point
s. In the following, we overload the outputs by writing them
as a function o(q, s) and fθ(q, s), where we also omit the
input X for brevity.

Our occupancy loss Locc is a simple binary cross-
entropy (BCE) loss summed across positive prompts P+

all =
P+
scene ∪P+

obj and negative prompts P−
all = P−

scene ∪P−
obj ∪

P−
bg ∪ P−

rand [16]. We also introduce a flow consistency
loss to ensure the consistency of the occupancy predictions
across timesteps. Given a query point q = (x, y, z, t) we
get the occupancy and flow predictions o, f = fθ(q, ...) so
that we can calculate a new query point q′ = (x+fx∆t, y+
fy∆t, z + fz∆t, t+∆t) where the occupancy will be after
a certain period of time ∆t. Assuming the flow is accurate,
the occupancy at the new query point should be the same as
the original occupancy due to instance permanence. Thus,
we can enforce the consistency with a BCE loss:

Lflow = −
∑

(q,s)∈Pall

(
o(q, s) log(o(q′, s))

+ (1− o(q, s)) log(1− o(q′, s))
)
.

(5)

3.4. Tackling Downstream Tasks with DIO

Semantic Occupancy Prediction: With our model com-
bined with a multi-class 3D detector we can recover se-
mantic occupancy (current and future). To do this, we can
use the source points corresponding to detection centroids

of a certain class (or set of classes) Scat, and prompt the
model at overlapping query points in a grid Qgrid. In other
words, use the prompts corresponding to the cross-product
Pcat = Scat × Qgrid. To get the semantic occupancy pre-
diction at a particular query point q, we can simply take the
maximum across source points oq = maxi fθ

(
X, (q, si)

)
.

It should be noted that, due to the implicit nature of our
decoder, we can also evaluate at different query points that
are not restricted to a standard grid (e.g., by identifying re-
gions for each instance based on kinematic constraints or
additional map information), which would reduce compu-
tation. An advantage of this is the possibility to increase the
sampling query resolution under compute constraints. We
investigate this more in the supplementary.

Lidar Point Cloud Forecasting: Point cloud forecasting
emerged as a task to evaluate 4D understanding in self-
driving models by predicting future LiDAR point clouds
based on past and current point clouds.[18, 19, 31–33].
This task involves estimating the depth that query rays from
future LiDAR returns will travel before hitting a surface.
We follow [18] and use a lightweight neural network, gγ ,
trained to predict these depths by processing occupancy pre-
dictions from our model along each ray. During training,
only the renderer parameters γ are being updated to mini-
mize an ℓ1 loss against ground truth depth, with the world
model’s parameters θ kept fixed. For LiDAR rendering of
instance occupancy, the renderer also outputs a probabil-
ity if the ray hits an object and supervises it with a cross-
entropy loss. For more details, refer to the supplementary.

4 Experiments
This section investigates the following research questions
while comparing against the state-of-the-art: Q1: Does
DIO capture better instance shapes (i.e., completion)? Q2:
Does DIO improve the occupancy-flow forecasts? Q3: Is
DIO capable to do open-set predictions when prompted
with source points belonging to instances of categories un-
seen during training? Q4: Is DIO robust to being prompted
with different types of source points unseen during training,
such as object centroids from off-the-shelf detector?

4.1. Experimental Setup

Implementation Details: Following prior work [18, 19],
DIO and the baselines receive 3.0 s of past frames. Due
to our more efficient sparse backbone, DIO is able to con-
sume 16 past frames at an interval of 0.2 s. We set the
learning rate to 1.0 × 10−4, starting with a 1,000-iteration
warmup from an initial rate of 1.0 × 10−5, followed by
a cosine decay learning rate schedule. Training is per-
formed over 50,000 iterations using a batch size of 16 with
the AdamW optimizer. On each batch sample, we train
DIO on |Q+

scene | = |Q−
scene | = 19, 000 used each for the

scene prompts and the instance occupancy prompts. Hence,
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Figure 4. DIO forecasts visualized on two different examples. In example 1, we see fast-moving traffic in both directions and a wide
variety of differently sized instances that DIO can decompose and predict. In example 2, we observe various highly detailed structures in
the scene occupancy and a large number of individual objects that are precisely isolated.

|P+
scene | + |P−

scene | = |P+
obj | + |P−

obj | = 38, 000. Addition-
aly, we sample each 6, 000 additional object-based P−

box and
free-space-based negative promts P−

rand. Further details are
given in the supplementary.

Datasets: For our experiments, we use the popular au-
tonomous driving Argoverse 2 (AV2) Sensor dataset. AV2
Sensor comprises 850 sequences collected across Austin,
Detroit, Miami, Palo Alto, Pittsburgh, and Washington,
D.C. Each sequence spans 15 seconds and includes 150
frames of LiDAR data with bounding box object annota-
tions. We use 700 sequences of the official split for training
and 150 sequences for validation.

Baselines: We compare with a variety of supervised and
unsupervised world models. ImplicitO-4D [16] represents
the state-of-the-art of world models supervised with 3D
bounding box labels, and it also features an implicit occu-
pancy architecture. Besides the supervision, an important
difference with DIO is that they use dense convolutions in-
stead of sparse. For unsupervised world models, trained
with LiDAR-based pseudo-labels, we include 4D-Occ [19]
and UnO [18]. 4D-Occ [19] is a representative method for
explicit occupancy prediction (i.e., voxel grids over time).
Note that we only compare against 4D-Occ [19] in fore-
casting metrics and not in completion as this baseline does
not have occupancy or point cloud predictions for t = t0 —

it starts at t = t0+0.6s. UnO [18] is the state-of-the-art un-
supervised occupancy prediction model, and it uses an im-
plicit architecture similar to ImplicitO-4D [16]. Lastly, we
compare against a joint detection and trajectory forecast-
ing oracle (Box Oracle) representing the group of instance-
based methods [2, 25, 59, 60]. This oracle simulates a per-
fect prediction of 3D instance boxes over time.

Completion vs. Forecasting: We evaluate the ability to
complete instances and whole scenes (t = t0), as well as
forecast them (t > t0). To assess completion while pre-
venting models from exploiting memorized input data, we
only feed the models with 60% of the present frame Li-
DAR points, withholding the other 40% points to be exclu-
sively used during evaluation. For future time forecasting
we pass the model all available past and current LiDAR
points and models are evaluated at t = t0 + ∆t, where
∆t ∈ {0.6 s, 1.2 s, . . . , 3.0 s}.

4.2. Occupancy Prediction

Semantic Occupancy Labels: Evaluation based solely
on bounding box labels fails to capture the actual shape of
abnormal instances, such as a person with their arms ex-
tended in different directions, an excavator, etc. To eval-
uate the actual shapes, we obtain occupancy pseudo-labels
through a combination of ray-tracing of the LiDAR points
and bounding boxes. We consider as negative (unoccupied)
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Completion (t = t0) Forecasting (t > t0)

mAPI ↑ S-IoUI ↑ mAPS ↑ S-IoUS ↑ mAPI ↑ S-IoUI ↑

Box Oracle 50.49 51.33 99.40 99.36 47.71 51.07

4D-Occ [19] - - 70.48 30.90 56.63 29.48
ImplicitO-4D [16] 65.04 52.96 97.31 69.83 61.51 45.51
UNO [18] 89.43 70.00 97.04 77.86 82.99 60.74
DIO-D 94.36 75.97 98.47 83.78 86.01 62.72

Table 1. 4D semantic occupancy on the vehicle class.

Completion (t = t0) Forecasting (t > t0)

mAPI ↑ S-IoUI ↑ mAPS ↑ S-IoUS ↑ mAPI ↑ S-IoUI ↑

DIO-∅ 95.53 79.63 97.16 80.14 86.14 63.19
DIO-L 95.23 77.65 98.78 87.48 87.10 64.43
DIO-NL 95.19 77.65 98.77 87.46 87.04 64.37
DIO-D 94.36 75.97 98.47 83.78 86.01 62.72

Table 2. Ablating the source point type for the vehicle class.

all the space traversed by all LiDAR rays up to their re-
turn point, and positive (occupied) 10 cm after the LiDAR
return point in the direction along the ray for points that
fall inside an instance bounding box that belongs to the set
of desired semantic categories. The occupancy of points
that are not traversed by any LiDAR ray (including the line
segment after the positive segment described above) is con-
sidered unknown and therefore ignored during evaluation.
To get a more fine-grained understanding of how well in-
stance shapes vs. free-space are captured, we consider two
versions of the semantic occupancy pseudo-labels: scene-
level where we use all rays available (denoted in the met-
rics with subscript S) and instance-level where we only use
ray segments that intersect with the instance bounding box
(denoted with subscript I).

Semantic Occupancy Metrics: We follow prior work
[11, 16, 47, 61] and employ average precision (AP) and soft
intersection over union (Soft-IoU) as our occupancy met-
rics. AP measures how well the occupancy predictions are
ranked, without taking into account the magnitude, whereas
Soft-IoU focuses on the calibration of the predicted proba-
bilities. When we average the AP over multiple time hori-
zons (for evaluating forecasting), we refer to it as mean AP
(mAP). We compute these metrics at the scene-level (APS,
Soft-IoUS) and instance-level (API, Soft-IoUI). Since the
negative portion of the ray is much larger than the posi-
tive portion, we sample an balanced number of negative and
positive query points for evaluation, ensuring the metric bet-
ter differentiates between accurate and inaccurate models.

Comparison against state-of-the-art: Tab. 1 bench-
marks our method on the task of 4D semantic occupancy
prediction methods for the vehicle class (as defined in
[18]). DIO-D —the version of our model where the source
points in the prompts come from the object detector HED-
Net [53]— performs best across all metrics. We empha-
size that by employing a detector to propose source points,

Completion (t = t0) Forecasting (t > t0)

mAPI ↑ S-IoUI ↑ mAPS ↑ S-IoUS ↑ mAPI ↑ S-IoUI ↑

4D-Occ [19] - - 85.74 36.95 70.42 43.67
ImplicitO-4D [16] 87.16 24.09 82.49 7.47 62.42 8.01
UNO [18] 85.85 85.84 96.37 70.48 80.10 65.58
DIO-∅ 98.43 88.15 97.49 76.71 88.45 71.42
DIO-NL 97.61 82.40 99.05 80.54 82.95 68.77

Table 3. Inspecting the open-set generalization of occupancy re-
construction and forecasting by evaluating on the holdout class.

L1 (m) ↓ AbsRel (%) ↓ NFCD (m2) ↓ CD (m2) ↓

RayTracing [19] 2.50 35.00 3.62 17.03
4D-Occ [19] 3.22 19.00 2.45 72.74
UNO [18] 2.24 12.00 0.86 8.10
DIO-∅ 2.11 11.00 0.85 13.96

Table 4. Results on the Argoverse 2 leaderboard.

our method avoids any ground-truth leakage, ensuring a
fair evaluation in comparison to the baselines. Remarkably,
our method relying on instances from an imperfect detec-
tor —which may contain mistakes like false positives and
false negatives— outperforms the other methods which are
trained end-to-end as a single model. Compared to the Ora-
cle Box, DIO achieves superior instance-level metrics, con-
sistent with the fact that the oracle relies on boxes that do
not accurately represent the true geometry of objects, high-
lighting the importance of predicting fine-grained shapes.
We also observe that all methods achieve better metrics at
the scene-level than at the instance-level. This is because
there are easy negatives in the scene-level evaluation (e.g.,
areas near the SDV where there is clearly no occupancy as
otherwise there would be dense LiDAR returns). In con-
trast, instance-level metrics lack such negatives, as all nega-
tive samples are confined within the object bounding boxes,
placing them in close proximity to positive occupancy re-
gions.

Qualitative results: In Fig. 4, we show exemplary visu-
alizations with scene occupancy, instance occupancy, and
scene flow. In the instance occupancy, DIO captures a va-
riety of different instances such as pedestrians, vehicles,
cones, and signs. In the scene occupancy, DIO is able to
capture fine-grained details about the background.

Robustness to different prompt sources: We investigate
the impact of different source points: empty (DIO-∅), la-
bel centroids (DIO-L), label centroids with uniform noise
inside the bounding box similar to training (DIO-NL), de-
tection centroids coming from off-the-shelf detector HED-
Net [53] (DIO-D). The results in Tab. 2 show that our
method is robust to the type of source points used. Here,
DIO-NL also performs similar to DIO-L underlining ro-
bustness to inaccurate source points.

Open-Set Generalization: To benchmark the open-set
capabilities of different methods, we evaluate all methods
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Completion (t = t0) Forecasting (t > t0)

L1 (m) ↓ AbsRel (%) ↓ HRNFCD,τ (%) ↑ HRAsy. NFCD,τ (%) ↑ L1 (m) ↓ AbsRel (%) ↓ HRNFCD,τ (%) ↑ HRAsy. NFCD,τ (%) ↑
τ = 0.5 τ = 2.0 τ = 5.0 τ = 0.5 τ = 2.0 τ = 5.0 τ = 0.5 τ = 2.0 τ = 5.0 τ = 0.5 τ = 2.0 τ = 5.0

4D-Occ [19] - - - - - - - - 20.67 60.05 - - - 4.81 18.24 30.07
ImplicitO-4D [16] 3.36 10.01 42.95 63.17 70.75 37.97 56.64 61.41 4.94 15.56 30.02 46.38 52.61 31.18 48.23 57.90
UNO [18] 3.42 11.71 - - - 71.06 89.00 95.33 4.90 20.07 - - - 59.29 85.16 94.12
DIO-NL 0.79 2.92 71.20 88.79 95.53 75.60 91.09 95.58 1.13 4.75 63.71 82.70 90.34 72.36 89.45 94.56

Table 5. LiDAR completion and forecasting evaluated on objects.

on occupancy for the held-out categories, which were never
seen during training: Bicyclist, Stopsign, Dog. We
selected these three classes to represent various properties
of unseen objects, including those with distinct dynamics
(Bicyclist, Dog), static objects (Stopsign), and rare,
small-sized objects (Dog), based on statistics from [34].
The results are presented in Tab. 3. We observe that DIO
achieves the best overall performance, which demonstrates
the generality of the learned occupancy representation. In-
terestingly, because no semantic understanding is required
from DIO-∅, it achieves the best shape completion, which
shows both in the present and in the future. In contrast, we
see that DIO-NL is stronger at forecasting due to informa-
tion implicitly encoded in the source point prior, which can
guide the forecasting process.

4.3. LiDAR Point Cloud Prediction

LiDAR prediction metrics: In line with [18, 19], we
evaluate model performance using depth L1 error (L1),
depth relative L1 error (AbsRel), Chamfer Distance (CD)
and Near Field Chamfer Distance (NFCD). The AbsRel
metric represents the L1 error normalized by the ground-
truth depth. While L1 and AbsRel measure the predicted
performance along a ray, NFCD and CD capture the sim-
iliarity between point clouds. We evaluate at the present
time t = 0.0 s, to capture the point cloud completion capa-
bilities of different models, and in the future to capture the
forecasting capabilities of each method.

To enable a fair comparison between object-based oc-
cupancy models (DIO, [16]) and scene occupancy model
([18]), which also predict background points, we also em-
ploy a object-based evaluation, also measuring how well
our method can distinguish instances. For each evaluation
frame, we select a random object in the ROI to run the met-
rics on. We can compare the LiDAR point of the ground
truth point cloud that lie within the label box, and com-
pare them the models’ predicted point cloud to achieve our
object-centric metrics.

However, using the NFCD with symmetric distance cal-
culation between predicted and GT point clouds would
favour object-based methods, which do not predict back-
ground points. Hence, we do not employ the NFCD com-
putation for methods which also predict background points
in the object-based evaluation setting. To still have a mea-
sure of point cloud similarity for all methods, we employ

the asymmetric NFCD (Asy. NFCD) only computing dis-
tances from the GT point cloud to the predicted point cloud.
Inspired by miss rate metrics in motion forecasting [62], we
employ a HitRate HRτ = 1

N

∑N
i=1 1(NFCD(Xi, Yi) < τ),

denoting the number of predicted point clouds for which the
NFCD is smaller than a set of previously defined thresholds
τ with units in m2. HRNFCD,τ and HRAsy. NFCD,τ denote the
HitRate for the NFCD and Asy. NFCD.

Comparison against state-of-the-art: Tab. 4 reports a
quantitative comparison of the state-of-the unsupervised
models with DIO-∅ in the task of scene LiDAR point cloud
forecasting and achieves the best performance on the pub-
lic leaderboard1 in the ranking metric (L1). That underlines
DIO-∅s learned general occupancy representation and its
utility as a world model.

Tab. 5 shows quantitative results of our models against
the state-of-the-art in the object-based evaluation setting.
It is apparent that DIO-NL outperforms all other models
by a large margin across all metrics (e.g., the completion
L1 is 4.3 times smaller than the strongest baseline), even
in those (HRAsy. NFCD) which favour baselines predicting
the whole scene point cloud. This demonstrates the strong
object-based understanding of the decomposed occupancy
model.

5 Conclusion
In this paper, we propose DIO, a decomposable implicit
occupancy world model capable of jointly predicting 4D
scene occupancy, decomposed occupancy, and flow in con-
tinuous 3D space and time. We demonstrate that DIO
outperforms state-of-the-art supervised and unsupervised
occupancy baselines in occupancy prediction and LiDAR
point cloud prediction experiments. Additionally, it exhibits
strong open-set prediction capabilities, indicating its abil-
ity to learn a generalized occupancy representation of both
individual instances and the scene. We showcase that our
model can be flexibly prompted to decompose scene occu-
pancy into instance-based occupancy. While our method re-
quires fewer labeled data than related work, it still relies on
bounding box labels during training. Future work could ex-
plore combining our approach with unsupervised object de-
tection techniques to reduce labeling requirements further.

1https://eval.ai/web/challenges/challenge-page/
1977/leaderboard/4662
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