DIO: Decomposable Implicit 4D Occupancy-Flow World Model

Supplementary Material

This supplementary material includes an extended dis-
cussion of related work in Sec. 1. It also provides additional
model and implementation details, including architecture,
training, baselines, and metrics, as described in Sec. 2. In
Sec. 3 we report additional quantitative and qualitative re-
sults. We present visualizations of our model, prompted
with different source points and comparisons against abla-
tions. Furthermore, we visually compare the scene occu-
pancy predictions with the state-of-the-art, and provide vi-
sualizations over multiple frames of a sequence. Please also
refer to the video of the supplementary material for addi-
tional visualizations. Lastly, Sec. 4 discusses the limitations
of our approach and outlines potential directions for future
work.

1 Extended Related Work:

Tab. | compares DIO’s features against those of ImplicitO
[1], 4D-Occ [1] and UnO [2]. DIO is the only method us-
ing prompts with source points (SP), enabling prediction
of scene occupancy, instance occupancy and flow, flexible.
Moreoever, it uniquely combines LiDAR and bounding box
supervision for instance occupancy, and introduces a new
sparse architecture.

DIO is also related to methods that predict scene flow.
[3] examines the generalization capabilities of neural scene
flow priors (NFSPs) and proposes a self-supervised ap-
proach for neural scene flow prediction using multi-frame
inputs. Similarly, [4] also goes beyond the two input frame
assumption, temporally fuses multiple point clouds after en-
coding 3D intra-voxel features, and introduces a new 4D ar-
chitecture for scene flow estimation. [5] proposes a multi-
body regularization for NSFPs improving predicted physi-
cally implausible motion vectors of prior methods. Track-
Flow [6] demonstrates that state-of-the-art scene flow meth-
ods struggle to capture the motion of small objects and
that existing evaluation protocols fail to account for this
limitation. However, none of the mentioned flow meth-
ods predicts 4D occupancy, uses an occupancy based flow-
consistency loss, or employ prompts as our method.

Method | Scenc Occupancy _ Background Occupancy _Instance Occupancy SP__Flow _ Supervision _ Network

Tmplicit0 7 Box Dense
4D-Occ 7 % B - LiDAR Dense
UnO % % B - - LiDAR Dense
DIO 7 7 7 Vv LiDAR+Box _ Sparse

Table 1. Tabular comparison of DIOs features against those of
ImplicitO, Occ4D and UnO.

2 Implementation Details
2.1. Architecture

Encoder: We omit the batch dimension in the follow-
ing to enhance clarity. A LiDAR sweep consists of a
set of points with four features, (x,y,z,t). This means
that each LiDAR sweep can be represented as a Lgyeep €
RN*4 tensor where N is the number of LiDAR points
in the given sweep. We leverage the sparse SECOND
backbone [7] to encode the point clouds, but modify it to
output feature maps at multiple resolutions. This results
in sparse feature volumes: Vg, € RI6x1280x1280x151
Vi, € R32XCU0X640x76 7o~ ¢ RO4x320x320x38  anqg
Vi € R128X160x160x19 Npote that aside from the feature
dimension (the first), these shapes merely reflect the artifi-
cial bounds of the sparse tensor, and do not reflect the actual
memory requirements. The sparse feature volume V¢4, is
then densified and then flattened along the z dimension and
outputs a dense feature map M'g, € R160X160x1152 The
densification process involves filling in the voxels that do
have sparse features, and filling in all remaining voxels with
zeros. This feature map is passed to a deformable spatial
attention neck (DSAN). DSAN then passes these dense fea-
ture map Mg, through a deformable convolutional layer,
specifically the pytorch implementation' [8]. Getting into
the specifics, we first use a linear layer to project the feature
size down to 256, then pass it into 4 layers of spatial de-
formable attention. Each layer has H = 8 attention heads
each with 4 offsets, a dropout of 0.1 and a feed forward di-
mension of 1024. After being passed through these layers,
which serve to spread the sparse features out, we pass this
dense feature map into a series of convolution and trans-
pose convolutional layers. More specifically, we first pass
it through 5 convolutional layers with a stride of 2, while
retaining the feature dimension of 256, and using ReLU ac-
tivations. Then we apply another convolution with a stride
of 1 with the same activation and output size, and finally put
the features through a transpose convolution with a stride
size of 2. This finally provides us with our dense feature
map Mg, € RI60x160x512 " The output of the encoder
are the concatenated scene features at multiple resolutions
Z = [Vaz, Vi, Ve, Mg, ], which are then processed by
the decoder described next.

Decoder: DIO first encodes a query point q with a si-
nusiodal embedding giving e, of size 64 (16x4) and then
uses q to perform a tri-linear interpolation at z,y, z in the
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sparse feature volumes Vs, V4., Vg, and a bi-linear in-
terpolation in M4,. The concatentation of the interpola-
tion results gives a vector z,. We perform the same op-
erations for the corresponding source point s resulting in
z, with the same size. We use a learnable embedding e,
with size 64 in case we prompt with an empty source point
for scene occupancy. Moreover, we encode both e, and e;
with a single linear layer followed by a ReL U activation re-
sulting in zq 1in and Zg jin. Zg, Zs, Sq,lins Zg,lin are Vectors
with a size of 624, whereas feature vectors are then added
with zg s = 24 + Z5 + Sq 1in + Zg,lin. We pass z, s through
a MLP to predict attention offsets Aq, which are together
with Z processed by a 3D deformable attention module [8]
followed by a MLP resulting in z,¢t with size 128. We use
4 different attention heads for each feature map in Z each
with 2 deformable attention offsets, resultig in 32 total de-
formable attention offsets. The final occupancy o and flow
f are obtained by: o, f = MLP (2t + Zg 1in + Zs lin + Zq,s)-

2.2. Training

We next describe hyperparameters used during training.
During training, DIO uses a combination of occupancy
loss L. and flow-consistency loss Lgoyw With L = Lo +
MowLiaow and Agow = 0.02. We train across 16 GPUs
with 50,000 iterations each and a batch size of 1 on each
GPU. For the instance occupancy-based negative prompts
we choose a scaled bounding box b) with length 100 m,
width 30 m and height equal to the height of the original
bounding box b, centered around the original box. For the
gaussian ball of the free-space based negative prompts, the
standard deviation for the 3D positions is o, = 20m, o, =
20m,0, = 2m (Equ.(3)). Here, per sample, we select
K = 10 negative source points associated with M = 800
query points each. The goal of the described source point
sampling is to ensure that the model generalizes as well as
possible to any possible continuous source point “source”
that may be used during inference. In summary we sample
‘,Ps_‘gene| + |,Pszene| + |P:l_)j | + IP(;Jj ‘ + ‘,Pl;)x‘ + ‘,Pr;nd‘ =

88, 000 prompts during training.
2.3. LiDAR Renderer

For training the downstream task of LiDAR point cloud pre-
diction, we utilize a ray depth prediction head as described
in [2]. The ray depth prediction head for scene models
([2] and DIO-©) is implemented as described in the orig-
inal publication. During training, the L1 loss Lraygepn is
computed between the predicted depth and the ground truth
depth for each ray, averaged over all rays.

DIO —when prompted with non-empty source points
(DIO-L, DIO-NL, DIO-D) — and ImplicitO-4D [1] only
predict occupancy for instances and not for the background.
Therefore, we apply the L1 loss only to rays that intersect
with the ground truth bounding boxes of instances. To en-

sure a fair comparison during evaluation, we still predict
the depth of all rays. However, since these models are not
trained on rays that don’t hit instances, this may result in
unreasonable predictions due to out-of-distribution errors.
Hence, for these models, we extend the ray depth prediction
head by adding an additional output that predicts the prob-
ability that a ray hits an instance paynic. During training, we
employ an additional cross-entropy loss, Lpaynii, based on
the predicted logit. Consequently, the final loss for the Li-
DAR renderer in instance-based occupancy models is given
by L= »Craydepth + »Crayhib

During the evaluation of instance-based models, we fil-
ter out all rays whose probability of hitting an instance is
smaller than 0.5 to get the final predicted point cloud. Fil-
tering the rays based on a learned model output ensures a
fair comparison in contrast to alternatives that would filter
the rays based on the ground truth bounding box, which
would leak instance size information during evaluation.

2.4. Experimental Details

Detector-based Source Points: In our experiments,
source points from a detector are generated using HEDNet
[9]. We use the original implementation” and the model pro-
cesses four LiDAR point cloud frames (the current frame
and three past frames) captured at 10 Hz to produce bound-
ing box proposals. These proposals include the 3D centroid,
width, length, height, heading, and confidence score. Final
detections are obtained by applying a score threshold of 0.1
and performing non-maximum suppression (NMS) with an
IoU threshold of 0.1. For the source points used to prompt
DIO, we extract only the 3D centroids from the final detec-
tions.

Baselines: We use the official implementation® and
trained model of 4D-Occ [10] as our baseline. For a fair
comparison, we re-implement ImplicitO [1] —which origi-
nally predicts BEV occupancy over time (2D+1=3D)— and
extend it to a 4D version that predicts 3D occupancy over
time. All other implementation details follow the original
work. Similarly, we implement UnO as described in its
original publication [2].

Metrics: Due to the evaluation setting, the number of in-
ference prompts during testing depends on the LiDAR rays
and the number of objects per scene and, hence, can vary
per frame. For more information about theoretical and ex-
perimental inference efficiency in an autonomy stack please
refer to Sec. 3.

In line with [2, 10], we evaluate our model performance
using depth L1 error (L1), and depth relative L1 error (Ab-
sRel), Chamfer Distance (CD), Near Field Chamfer Dis-
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tance (NFCD). The NFCD is computed within a speci-
fied region of interest (ROI) around the ego vehicle, set as
[—70, 70] m in both z-axis and y-axis, as well as the ROI in
z-direction is [—4.5,4.5] m. We follow the implementation
of the metrics as described in [2].

Instance-based Point Cloud Prediction. In the object-
based evaluation the ground truth point cloud consists of
points inside the current instance of interest. Hence, we
only compute the L1 and AbsRel for rays, whose LiDAR
points are located inside the bounding box. For models that
predict only occupancy for instances (ImplicitO-4D, DIO-
NL) we filter the rays based on the predicted ray hit proba-
bility as described above. If the probability is larger than
0.5, we consider the ray and its corresponding predicted
depth as valid. Hence, for the NFCD calculation in the hit
rate metrics HRxrep,» and HRagy nrep,~ Of these models
we consider the point cloud of the valid rays as the pre-
dicted point cloud. We use the same ROI in x and y direc-
tion as in the leaderboard evaluation. The ROI in z-direction
is [-1.5,3.5].

For the scene occupancy baselines [2, 10], we do not em-
ploy HRnkcp, - because this metric favors models that pre-
dict only instance-based occupancy. This preference arises
because the symmetric Chamfer distance, when applied to
scene occupancy, also accounts for the shortest distances
between distant background points and ground truth (GT)
points within the bounding box. In contrast, the NFCD
calculation for HR o¢y. Nrep considers only the shortest dis-
tances originating from the GT points within the bound-
ing box. Notably, the latter metric could even favor the
scene occupancy baselines, as these models predict more
points compared to DIO-NL or [1], which only predict
point clouds of instances.

3 Additional Results

Leaderboard Results: Tab. 2 reports all methods of the
leaderboard of the Argoverse 2: 4D Occupancy Forecasting
Challenge* comparing to the results of DIO. We observe
that DIO outperforms all baselines in terms of L1 (rank-
ing metric), AbsRel, and NFCD. While DIO underperforms
UnO in the CD metrics, that is likely because it was trained
on a ROI smaller than the one stated in [2] due to memory
constraints. The better performance in NFCD which evalu-
ates with a smaller ROI supports this hypothesis.

Computational Complexity: In theory, DIO’s runtime
is linear w.r.t the prompts (i.e. query-source point pairs).
In practice, all prompts run in parallel (constant runtime
regime) until the GPU saturates (linear runtime regime). In
Fig. 1, we visualize the inference time on a NVIDIA RTX
2080 Ti as a function of the number of prompts (query and
source point pairs). For qualitative results, we query the

“https://eval.ai/web/challenges/challenge-page/
ard/4662

1977/1leaderbo

L1 (m) | AbsRel (%) | NECD (m?) | CD (m?) |

RayTracing [10] 2.50 35.00 3.62 17.03
occformer_epl5 3.57 22.00 3.35 91.61
4D-Occ [10] 3.22 19.00 2.45 72.74
occformer 297 17.00 2.03 71.33
Progressive ARM 2.32 13.00 1.81 71.41
UNO [2] 2.24 12.00 0.86 8.10

DIO-@ 2.11 11.00 0.85 13.96

Table 2. Full results of the Argoverse 2 leaderboard. For methods
that are published we report the corresponding reference.

entire voxel grid around the SDV for each source point,
which results in a high prompt count. However, this is
not required for autonomy, as shown in QuaD [11], which
smartly queries only around candidate SDV future trajecto-
ries. For a similar number of prompts as used in QuAD,
the runtime of DIO is similar to UnO. Assume a scenario
with ten other relevant vehicles, and that the planner con-
siders 2,000 candidate trajectories with 10 timesteps each,
and 10 points to approximate the SDV’s contour [1]. This
results in 200,000 query points |@Q|. Constructing scene and
instance occupancy for ten vehicles would require |P| =
Q] + |5]|Q] = 11]|Q| = 2,200, 000 prompts, but as shown
in QuAD, query quantization can reduce |Q| by two orders
of magnitude without sacrificing performance, which sets
|P| ~ 22,000, well within the real-time regime. Thanks to
DIO’s flexibility, even if there is a larger number of relevant
objects in the scene, we could select a small subset of rele-
vant agents for which to run instance occupancy (i.e., with
non-empty source point), and handle the rest with scene oc-
cupancy (i.e., empty source point) to help with runtime scal-
ing. In addition to query quantization, future works could
further reduce the query points by using reachable sets of
objects. We also found sparse convolutions crucial for the
3D backbone, as dense ones exceeded memory limits during
training, while inference times remained similar (15.08 ms
sparse vs. 13.62 ms dense).

Parameter Scaling: In Fig. 2 we show experiments
down-scaling the width of DIO’s neck and header layers
by a factor of 2,4,8, respectively. Even our most down-
scaled model still outperforms UnO. We intentionally do
not downsample the backbone as it is directly taken from
the previous work SECOND [7] and it is therefore beyond
our scope to evaluate it’s efficacy when shrunk.

Effect of Box-based Negative Queries: Fig. 3 shows a
comparison between our base model and an ablation that
does not use additional negative queries. As evidenced by
the results, neglecting the addition of negative queries leads
to false-positive predicted occupancy in the bounding boxes
of other agents, which underscores the importance of this
design choice.
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Figure 1. Computational complexity of DIOand baselines for dif-
ferent operation points.
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Figure 2. Down-scaling DIO’s neck and header layers by a factor
of 2, 4 and 8, respectively. Even our smallest model, with over 5
x fewer parameters than UnO, still outperforms it.

Effect of Flow-Consistency Loss: Fig. 4 ablates the in-
fluence of the flow-consistency loss. Not using this loss
leads to a time-boundary effect where the present-time oc-
cupancy at query points q;—;, contains many gaps. This is
because the model is trained to predict occupancy imme-
diately behind the LiDAR return, so mimicking the input
point cloud from the input is an effective way to minimize
this loss when q;—:,. However, since this is not effective
to minimize the loss at q;»¢, as the model does not have
the corresponding LiDAR points as input, the flow consis-
tency loss solves the issue. Beyond enhancing the scene
completion capabilities of our model, incorporating flow as
an additional output provides valuable information for the
decision-making process of SDVs. Motion planners can
leverage flow, alongside predicted occupancy, in its cost
functions such as those related to headway [12].

Prompting with Different Source Points: Fig. 5 vi-
sualizes the predicted instance occupancy when DIO is
prompted with source points at different locations. We ob-
serve that, when prompted with a source point lying within
the bounding box of an object, the model correctly predicts
the shape of the corresponding object. In contrast, when
queried with a source point that lies in free space, the model
does not predict any occupancy.

Multi-Modal Forecasting: Multi-modal forecasts, such
as those in Fig. 7 - Example 2 (3 s), show different predicted
maneuvers (lane-following vs. lane-changing). Moreover,
in Fig. 6 (black circle) we illustrate turning-left vs. going-
straight predictions. Sampling separate modes of the dis-
tribution is interesting for future work and could be done
using generative models (e.g., diffusion).

Additional Visualizations Fig. 7 visualizes DIO’s scene
occupancy, instance occupancy, and scene flow outputs
in additional examples. Fig. 8 provides visualizations of
DIO’s occupancy completions at different time steps of the
same sequence. Lastly, Fig. 9 shows a comparison of DIO
against the state-of-the-art 4D occupancy model UnO [2]
in different scenes. For a more detailed description of the
figures please refer to the individual caption. During all
visualizations we use the centroids of the label bounding
box to generate source points for instance occupancy. Fur-
thermore, during visualization for both scene and object
queries, we query the model on a full uniform voxel grid.

4 Limitations and Future Work

First, in our experiments, the detector uses a separate back-
bone to encode the LiDAR information, which induces ad-
ditional computational overhead. Future work could train a
joint model using a shared backbone with both a detection
and an occupancy head. One advantage here could be that
detections of varying quality could be used for source point
generation during training. For example, one could gener-
ate additional negative queries based on false-positive de-
tections, making the approach even more robust against the
source point type. Moreover, further advantages of multi-
task architectures have been demonstrated in [13].

Second, the separation of the occupancy of different in-
stances is less and less clear as the future horizon grows,
which can be partially observed in Fig. 7 (e.g., overlapping
futures). This is expected as the model is trained to pre-
dict the marginal probability that an instance occupies a 4D
point, but this depends on the joint distribution of behaviors
of the different agents in the scene. Although the current be-
havior is perhaps desired for some applications, there might
be others where modeling this joint distribution via a gener-
ative model [14—18] could be more adequate, which would
allow to separate different futures.
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Figure 3. Ablation study on the impact of the additional instance-based negative query points. The figures show a scene with a one-sided
street for two forecasted time steps. The source point lies inside the agent highlighted by the red circle. Omitting the negative queries results
in false-positive occupancy predictions in other objects. For instance, the ablation without additional negative queries predicts occupancy
of the queried agent inside the parking vehicles and also an unreasonable backward movement (white circles). In contrast, the base model
predicts a multi-modal future indicating possible acceleration, deceleration and lane changes maneuvers. The ground truth bounding boxes
are visualized in grey. The occupancy forecasts are colored by height and occupancy probability value.

Example 1 Example 2

Figure 4. Ablation study on the impact of the flow-consistency loss Lsow. Omitting this loss results in a voxelization effect at the present

time step and false-negative predicted occupancy (black color).

(@) (b) (© (d)

Figure 5. Prompting DIO with source points (cyan dot) moving on a straight line from object 1 (a), over free space (b, c) to object 2 (d).
Grey boxes illustrate the label bounding boxes for reference. The model is queried in a voxel grid spanning the whole ROI.




Figure 6. Multi-modal forecasts (turning-left vs. going-straight) indicated by the black circle.
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Figure 7. DIO forecasts visualized on two different examples. In example 1, we observe accurate shape predictions of pedestrians (e.g.,
orange instance) and decomposition of the crowded scene with flow predictions in both traffic directions. Example 2 shows multi-modal
future occupancy predictions with reasonable uncertainty due to possible acceleration and deceleration as well as lane change and turning
maneuvers. Notably, the decomposition into instance occupancy allows to gain insight from which instance this uncertainty originates
which can lead to a safer decision-making process.
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Figure 8. Visualizing DIO’s scene and instance occupancy completion over multiple time steps of the same sequence. Our model predicts
highly detailed static structures like a construction site barrier and signs, moving vehicles (e.g., green, pink and purple instances), pedes-
trians and even one with a stroller (white circle) waiting at the intersection.



UnO [2] DIO-o True LiDAR

Figure 9. Comparing UnO’s [2] and DIO-@&’s scene occupancy in multiple scenes where our model predicts more fine-grained structures.
For instance, vehicle shapes of DIO’s predictions often include the mirrors and wheels and the shape of signs is sharper. Furthermore,
we observe the following among others: (A) UnO’s output shows false-positive occupancy behind moving vehicles. (B) DIO predicts the

pose of pedestrians waiting at a bus stop and a sharp border of a sidewalk. (C) DIO predicts individual stairs. (D) DIO predicts trees and
a guard-rail in higher resolution.
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