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Abstract: In order to navigate complex traffic environments, self-driving vehi-
cles must recognize many semantic classes pertaining to vulnerable road users
or traffic control devices. However, many safety-critical objects (e.g., construc-
tion worker) appear infrequently in nominal traffic conditions, leading to a severe
shortage of training examples from driving data alone. Recent vision foundation
models, which are trained on a large corpus of data, can serve as a good source
of external prior knowledge to improve generalization. We propose FOMO-3D,
the first multi-modal 3D detector to leverage vision foundation models for long-
tailed 3D detection. Specifically, FOMO-3D exploits rich semantic and depth
priors from OWLV2 and Metric3Dv2 within a two-stage detection paradigm that
first generates proposals with a LiDAR-based branch and a novel camera-based
branch, and refines them with attention especially to image features from OWL.
Evaluations on real-world driving data show that using rich priors from vision
foundation models with careful multi-modal fusion designs leads to large gains
for long-tailed 3D detection. Project website is at https://waabi.ai/fomo3d/.
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1 Introduction

3D object detection is a fundamental task in modern self-driving systems. State-of-the-art percep-
tion models [1, 2] can detect and classify common object classes such as car and truck reliably
well thanks to their frequent occurrences in large-scale urban driving datasets [3, 4]. However,
these methods struggle to recognize long-tailed object classes such as construction worker and
debris due to a lack of supervision [5]. To deploy a self-driving vehicle safely on the road, it is
crucial to detect both common and rare objects well, regardless of their frequency in the real world.
Long-tailed class imbalance has been a long-standing challenge in the deep learning and computer
vision community [6]. Classic class-rebalancing methods such as resampling [7, 8] and loss re-
weighting [9, 10, 11] are popular due to their simplicity. However, they are still restricted to the
original data with few long-tailed examples, resulting in limited success often at the expense of
common class performance [5]. On the other hand, information augmentation techniques [6, 12, 13]
address class imbalance by leveraging external training data or pre-trained models [14, 15]. Inspired
by this, we seek external priors to improve long-tailed 3D detection (LT3D) in self-driving.

Recent vision foundation models trained on an enormous corpus of internet images [16, 17] exhibit
remarkable zero-shot generalization on many vision tasks including detection [18, 19], depth estima-
tion [20, 21] and classification [16]. As shown in Fig. 1, vision foundation models bring promising
prior knowledge for long-tailed detection. However, they are limited to processing only images,
while state-of-the-art 3D object detectors [2, 22, 23] and LT3D methods [5, 24] rely heavily on Li-
DAR for its accurate 3D spatial information. Exploiting vision foundation models for 3D detection
therefore requires processing their 2D priors with 3D sensory inputs. Fusing LiDAR and camera
data is challenging due to their inherently different modalities. On top of this, vision foundation
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Figure 1: Vision foundation models OWL (left) and Metric3D (middle) show remarkable zero-shot gener-
alization capabilities for 2D object detection and monocular depth estimation. Our model FOMO-3D (right)
incorporates these strong priors along with LiDAR for multi-modal 3D object detection.

model priors are expressed through different representations, specifically 2D detections [19], image
features [16, 19] and dense depths [21]. Existing multi-modal fusion techniques [2, 25, 26, 27] can-
not accommodate all of these representations simultaneously. Thus, we need a novel fusion method.

To this end, we present FOMO-3D, a multi-modal 3D detector equipped with novel fusion methods
to incorporate different types of 2D image priors in conjunction with raw sensor inputs. In particular,
we adopt OWLv2 [19] for zero-shot 2D object detection and Metric3Dv2 [21] for dense monocu-
lar depth estimation. Built upon a two-stage detection paradigm [28], our novel camera proposal
branch performs early fusion by lifting OWL detections into 3D, using Metric3D depth and LiDAR
to recover accurate 3D geometry. On the other hand, our proposal refinement performs feature-level
fusion with OWL features to exploit the full semantic and contextual information in images. To the
best of our knowledge, FOMO-3D is the first to incorporate prior knowledge from foundation mod-
els for closed-set multi-modal 3D detection. We conduct thorough experiments on an urban driving
dataset nuScenes [3] and an in-house highway dataset, both with heavily imbalanced real-world ob-
ject class distributions. Our evaluations show that FOMO-3D outperforms existing methods trained
on driving datasets alone, illustrating how powerful foundation model priors, combined with our
careful multi-modal fusion designs, can lead to superior performances on long-tailed 3D detection.

2 Related Works

3D Object Detection is a well-studied problem in self-driving. Mainstream 3D detectors can be
divided into LiDAR-based, camera-based, and multi-modal detectors. Modern 3D LiDAR detec-
tors [1, 29, 30, 31] are inspired by image-based 2D detectors [32, 33], and usually adopt convolution
in the Bird’s-Eye-View (BEV) or 3D space to process LiDAR point clouds. On the other hand,
camera-based 3D detectors [34, 35, 36, 37, 38, 39] commonly learn depth estimation to lift image
information to process in 3D, but have limited success because monocular depth estimation from
images alone is very challenging. Multi-modal detectors take both LiDAR and camera data as input.
Early-fusion methods rely on mature detectors for one primary sensor modality, and fuse the other
modality in the input space: they either decorate LiDAR points with image features to apply LiDAR-
based detection [40, 41], or leverage mature 2D detectors and use point clouds to localize 2D detec-
tions in 3D [26, 27]. However, these methods are constrained to the primary sensor modality and
suffer from LiDAR sparsity or 2D detection errors. Feature-fusion methods fuse image and LiDAR
features in the BEV space [2, 42] or image and LiDAR space [43] to decode detections, but they are
not designed to incorporate detection outputs from mature detectors. On the contrary, late-fusion
methods [5, 24, 44] directly aggregate detections from a LiDAR detector and a camera detector, but
usually involve sophisticated heuristics to correct detection errors. Orthogonally, with the success
of the two-stage transformer-based 2D detector DETR [28], there has been a trend [25, 45, 22, 23]
to represent each object as a query token and perform attention to sensor features to refine them.
Our multi-modal design can be seen as a combination of all these techniques: we use a two-stage
DETR-like framework, where the proposal stage consists of a mature LiDAR-based detector and
a novel camera-focused 3D detector that performs early fusion on mature 2D detections, and the
refinement stage uses attention and feature-level fusion to refine aggregated multi-modal proposals.
Long-Tailed Perception has been widely studied in image classifications and detection. Class-
rebalancing [7, 8, 9, 10, 11] and information augmentation techniques [12, 13] are mainstream
solutions to tackle this problem [6]. [5, 24] are pioneering works to study long-tailed 3D detec-
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Figure 2: Overview of FOMO-3D, which leverages vision foundation models OWL and Metric3D, and follows
a two-stage paradigm with a multi-modal proposal stage and an attention-based refinement stage.

tion with simple heuristics. [5] proposes using a single group-free classifier header for detectors,
training with parent object classes for additional supervision, and a multi-modal filtering (MMF)
technique which removes LiDAR detections that are not in the vicinity of any 3D camera-based
detections. [24] proposes a multi-modal late fusion (MMLF) heuristic that alters LiDAR detection
scores based on image-space associations with 2D detections. Both MMF and MMLF assume high
recall from LiDAR detections, which is not true for sparsely observed small and/or distant objects.
Furthermore, the camera detectors still suffer from limited training examples of long-tailed objects
in driving datasets. In this work we explore using pre-trained foundation models as an external prior.

Vision foundation models such as CLIP [16], DINOv2 [17] and EVA-02 [46] are trained on an
enormous amount of internet data and contain rich semantic features. Open-vocabulary 2D object
detectors [18, 19, 47, 48] are additionally trained with 2D detection labels and exhibit strong zero-
shot 2D detection performance on user-given text prompts. Similarly, monocular depth foundation
models [20, 21, 49, 50] based on DINO-v2 and fine-tuned with labelled depth data also have excep-
tional zero-shot depth estimations. To leverage vision foundation models, existing camera-based 3D
detectors [51, 52, 53] observed gains by directly using EVA-02 as the image feature extractor back-
bone, and existing multi-modal 3D detectors [54, 55, 56] focus on open-set 3D detection and seek
to detect novel classes without labels in the training set. By contrast, we are the first multi-modal
method to utilize vision foundation models in the traditional closed-set 3D detection setting.

3 Method

3.1 Background: Vision Foundation Models and Query-based Object Attention

To improve long-tailed 3D object detection, our method employs two vision foundation models:
OWLV2 [19] for 2D object detection and Metric3Dv2 [21] for monocular depth estimation. We
refer to these models as OWL and M3D for brevity in the rest of this paper.

OWL is a vision-language model for open-vocabulary object detection. Given an image and any
user-specified text prompts, OWL generates corresponding 2D bounding boxes. Due to an enormous
training corpus of over 10 billion image-text pairs, OWL generalizes exceptionally well to rare
objects in traffic environments. OWL consists of two parallel encoders for image and text inputs.
The image is first partitioned into patches of p x p pixels, and a lightweight convolutional neural
network (CNN) encodes each patch into a transformer token. The tokens are then processed through
a vision transformer [57] to output a final set of tokens F,,;. Each token vector f,,,; ; subsequently
decodes a 2D bounding box bgyi,; = (u;, vi, w;, h;) and a semantic embedding. On the other hand,
the text transformer takes a set of input text prompts 7 and encodes each text prompt ¢; into the
same embedding space. As a result, each box-prompt pair can be assigned an affinity score based
on the similarity of their respective embeddings.

Metric3D is a monocular metric depth estimation model that takes input image I € Z7*W and
camera intrinsics K € R3*3, and outputs depth map D € R”*W expressing the depth of every
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Figure 3: [Left] Lifting OWL camera proposals to 3D bounding boxes. We first unproject pixels inside the
camera proposal into 3D using Metric3D depths, and then encode the points into a BEV feature map. Each
OWL token subsequently attends to fused LiDAR and image BEV features sampled along the frustum. [Right]
During supervision, camera proposals are only matched to ground truth boxes inside the object frustum.
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image pixel in meters. Pixel-level dense depths are particularly useful in self-driving datasets, where
typically only sparse depths are available via projecting LiDAR points onto the images. M3D is also
trained on a large corpus of data including real and synthetic depth datasets, and exhibits remarkable
zero-shot generalization performance on outdoor self-driving images.

Query-based object detection first introduced by DETR [28], represents each object with a learn-
able object query which is defined as a feature vector q; € R? accompanied by an initial 3D posi-
tion q, = (¢z, gy, ¢-). Object queries incorporate various types of information in the scene through
transformer attention layers. At a high level, an attention layer takes as input an object query q ¢ and
information F from the scene (e.g., LIDAR features, image features, other object queries) and out-
puts an updated query q} by attending [58] to F. Details of attention can be found in supp. After qy
encodes geometry and semantic information of the object, a multi-layer-perception (MLP) typically
processes qy to decode a 3D bounding box and the object class. FOMO-3D adopts query-based
attention in the camera proposal branch and in the refinement stage.

3.2 FOMO-3D: Using Vision Foundation Models for Multi-Modal 3D Detection

FOMO-3D utilizes 3 types of foundation model outputs: image detections and image features
from OWL, and dense pixel-level depths from M3D. An overall architecture of how FOMO-3D
fuses this information with sensory inputs is shown in Fig. 2. Built upon a two-stage detection
paradigm [28, 45, 23], FOMO-3D first generates detection proposals through two complementary
LiDAR and image branches. The LiDAR branch processes input point clouds to generate accurate
3D detections. Complementary to LiDAR, the camera branch generates proposals for rare or small
objects that are better distinguished in the image. Here we lift OWL detections into 3D, utiliz-
ing dense M3D depths and a novel frustum-based fusion module. We then refine the multi-modal
proposals through query-based detection to incorporate additional information from LiDAR, OWL
features, and object relationships. Finally, queries are decoded into object classes and BEV bound-
ing boxes (z,y, 2,1, w, h, §), denoting centroid (x, y, z), box size (I, w, h) and heading 6.

3.2.1 LiDAR Proposal Generation

Following modern multi-modal 3D detectors, we employ a LIDAR proposal branch to process point
cloud inputs with accurate spatial information. Specifically, we leverage the single-stage Center-
Point [1] architecture, which, given a LiDAR point cloud (along with aggregated past few sweeps),
first voxelizes the points into V,, x V}, x V, voxels, then applies a convolution-based backbone and
a feature pyramid network to obtain a 8 x down-sampled BEV feature map Fy;q44,- € RV xVyxD,
Finally, following [5], we employ a group-free header design, which uses a single class header and
a single regression header to output multi-class 3D proposals. The class header decodes feature map
Fjiqqr into a heatmap H € RVQXVJXC, where C' is the total number of object classes, and each



hiji € H indicates the probability of an object of class k present at BEV pixel (7, j). The regres-
sion header decodes 3D bounding box centroids, dimensions, heading angles and velocities for each
BEV coordinate (4, ) in the feature map. See [1, 5] for more details.

3.2.2 Camera Proposal Generation

In parallel, FOMO-3D employs a camera proposal branch to discover rare and/or small objects
that LIDAR may have missed due to a lack of semantic information or observability. To this end,
OWL'’s exceptional 2D detection capabilities and objectness priors motivate us to use image detec-
tions directly. Thus, we design a camera proposal branch which transforms 2D OWL detections
to 3D bounding boxes. At a high level, we first initialize each 2D detection as a 3D object query
(Sec. 3.1). We then exploit additional spatial information from LiDAR and dense depth images,
to provide positional and geometric information to the object queries. Here we introduce a novel
frustum-based attention mechanism to incorporate relevant information within the 3D frustum of
each 2D box. A summary is illustrated in Fig. 3 and we detail our methodology below.

Query Initialization. Following Sec. 3.1, for an input image I and text prompts 7 pertraining
to classes of interest, we first extract OWL token features and 2D detections {(foui,i, Powi,i)} =
OWL(I, 7). Please see supp. for details on prompting. Next, we convert OWL detections into 3D
object queries. For each detection by, ; with token feature f,,,; ;, we initialize the query feature
ar: = fouwri + PE([u;,v;,di]) + PE(qp,:), where PE is the positional encoding function [58],
d; = D(u;,v;) is the M3D depth estimate, and the initial 3D query position

api = [RIt] 'K uy, v, di] " (1

is recovered from unprojecting the 2D box center (u;,v;) into 3D using M3D depth d;, camera
intrinsics K € R3*3, and extrinsics [R|t] with rotation R € SO(3) and translation t € R3.

BEYV Feature Construction. The initial query features q ; are derived from the image and lack
3D geometry information. Moreover, the 3D position of the query may have errors stemming from
depth estimation d;. To address this, our camera proposal branch exploits additional 3D informa-
tion expressed explicitly in LiDAR features Fy;4,, and implicitly through dense image depths D.
Specifically, we generate an image-based pseudo point cloud as follows: for each image pixel (u, v)
inside any 2D OWL detection, we follow Eq. 1 to lift it to 3D. Each lifted point is accompanied
by an OWL feature vector at F,,,;(u,v) to preserve semantics information. The image-based fea-
ture point cloud is then voxelized and encoded into a BEV feature map F oy pey € RVzxVyxD
similarly to F;4,-. We fuse the two BEV feature maps into Fy., by simply concatenating
Fpeo (i, ]) = Flidar(iv ]) | |Fowl,bev (ia .]) at each BEV pixel (ia J)

Frustum Attention. Intuitively, refining the query’s 3D position primarily involves correcting the
estimated depth by leveraging information along the camera frustum. Therefore, following by [26,
27], we lift the cropped image region from the 2D box b; = (u;, v;, w;, h;) to obtain a 3D box
frustum, which defines the search range to locate the object in 3D. To further efficiently sample BEV
features inside the box frustum, we construct a mesh grid of (2N, + 1) x (2N, + 1) x (2N, + 1)
sampling locations around the initial 3D query position qp, ;:

ui + iy - wi p=-No..., N,
P; = < Unproject | | Vi + ﬁ’hi K, [R]t] q=—Ny,...,Ny ()
di-l-ﬁﬁ r=—-N,,...,N,

where 0 is a hyperparameter denoting the search distance along the depth direction, and the unpro-
jection function follows Eq. 1. For each p; = (2, y¢, 2z¢) € P; unprojected from (ug, vy, dy), we
retrieve feature from Fy., via bilinear sampling at BEV location (2, y,). We further add spatial
information relative to the query point with positional encoding and derive gy = Fpey (24, y0) +
PE([qz,i — Te: Qy,i — Yo, Qi — 2¢]) + PE([wi — wg, v — ve, di — dy]).

Now, for each object query f, ; representing a 2D OWL detection, we apply a series of transformer
layers to fuse information from the scene. Specifically, we first apply object self-attention that
attends £, ; to all object queries {f, ;} in the image to leverage object relationship cues. Then, we
cross-attend with the sampled BEV features {gy} to effectively incorporate 3D information in the



object frustum. We finally use lightweight MLP layers to decode 3D box parameters and a class
vector ¢; € [0,1]¢ for C classes, where c;;, denotes the probability that object i belongs to class k.
At the end of the proposal stage, we derive a set of LIDAR-based 3D proposals and a set of camera-
based 3D proposals. For the multi-camera setting, we apply the camera proposal model to each
camera image independently. To fuse these multi-modal proposals, we simply concatenate them and
deduplicate with non-maximum suppression (NMS).

3.2.3 Attention-based Refinement Stage

Next, we refine aggregated multi-modal proposals using more general attention mechanisms to the
whole scene. We initialize each proposal as an object query as follows: the initial 3D position q, is
assigned directly with the 3D centroid of the proposal, and the query feature q is either Fy;4qr (¢, j)
or the final camera query token that decodes the proposal. Then, each query attends to all object
queries, image features JF,,,;, and LiDAR features F;4,, through a series of attention layers. We
follow [45, 23] for object self-attention to exploit scene-level object relationship cues, and LiDAR-
cross attention for additional information from the point cloud. Please see supp. for more details.
To further leverage rich semantic priors from OWL that is essential for object classification, we
perform multi-camera cross-attention to F,,,;. Note that different from the camera branch where
we attend to lifted image features in the BEV, here we attend to the 2D features in the image space
directly. Concretely, for each object query, we project its initial 3D position q, onto each camera
image j with intrinsics K; and extrinsics [R;|t;] to obtain image-space coordinates (uj,v;) =
K;[R;|t;]q,. Then, for each valid projection (u;,v;) inside the image, we use a simple MLP to
decode 2D offsets from q, sample F,,,,;_ ; at these locations, and perform deformable attention [59]
to obtain an aggregated feature h;. Then, we fuse all {h,} via mean-pooling, and update the query
feature q in the rest of the transformer layer. Please see supp. for more mathematical details.

3.2.4 Training and Loss Functions

In accordance with two-stage detection models, we follow a two-stage training schedule, which
trains FOMO-3D’s multi-modal proposals branches first, and then trains the refinement stage with a
frozen proposal module. For the LIDAR-branch, we follow the standard box regression loss from [1]
and group-free heatmap sigmoid focal loss from [5]. For the attention-based camera proposal branch
and refinement module, we adopt the DETR-style set loss function [28, 45], with the modification
that for camera proposals, we add a hard constraint in the matching based on the intuition that the
corresponding ground-truth for a camera proposal (if the ground-truth exists) must fall in the same
object frustum. Please see Fig. 3 for an illustration, and supp. for full details.

4 Experiments

We conduct extensive experiments on two real-world datasets to understand the effectiveness of
our approach. In this section, we compare FOMO-3D against existing works on both datasets, and
perform ablations to justify our application of foundation models.

Method Modality A1l Many Medium Few
FCOS3D [36] C 20.9 39.0 233 2.9
BEVFormer [38] C 273 52.3 31.6 1.4
CenterPoint (Group-Free) [1, 5] L 39.2 76.4 43.1 3.5
CenterPoint (Group-Free, w/ Hier.) [1, 5] L 40.4 77.1 45.1 4.3
BEVFusion-L [2] L 425 72.5 48.0 10.6
TransFusion [25] L+C 39.8 73.9 41.2 9.8
BEVFusion [2] L+C 455 75.5 52.0 12.8
CMT [2] L+C 444 79.9 53.0 4.8
MMF [5] L+C 43.6 77.1 49.0 9.4
MMF* (w/ OWL + M3D) [5] L+C 443 77.7 46.9 13.4
MMLEF [24] L+C 514 71.9 59.4 20.0
FOMO-3D L+C 54.6 79.9 59.6 27.6

Table 1: [nuScenes] Comparison with SOTA methods (measured by mAP). L denotes LiDAR, C denotes
camera and * is our re-implementation. Our method FOMO-3D improves LT3D performance across all object
groups, with a significant 7.6 mAP gain in Few and a 2.0 mAP gain in Many.
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Figure 4: Real-world class distribution on nuScenes and Highway. Both exhibit severe class imbalances.

Method Car Adult Truck CV Bicycle MC Child CW Stroller PP

MMF [5] 88.5 866 634 290 58.5 68.2 53 358 316 393

MMLF [24] 863 877 606 353 70.0 75.9 88 55.9 377 58.1

FOMO-3D 889 907 651 366 72.8 802 298 602 40.1 50.0
Table 2: [nuScenes] Class-specific mAP. CV = Construction Vehicle. MC = Motorcycle. CW = Construction
Worker. PP = Pushable-Pullable. Medium and Few classes are in blue.

Datasets and Metrics. We experiment with two real-world driving datasets with diverse LT3D
challenges pertaining to urban and highway settings. First, for the urban setting, following [5, 24],
we use the nuScenes dataset [3]. nuScenes contains 1000 diverse urban scenes captured by a top
360° LiDAR and six cameras. We evaluate on all 18 annotated classes in the validation set, which
are divided into three groups Many, Medium and Few based on commonality. Following [5], the
evaluation range-of-interest is set to be 50 meters relative to the self-driving vehicle (SDV) for
vehicles, 40 meters for pedestrians, and 30 meters for movable objects. To further evaluate long-
range detection, we use an in-house Highway dataset, which contains over 1700 20-second long
training sequences and 400 evaluation sequences, mostly collected from U.S. highways. We use one
front camera for our experiments, with a detection region of interest of [0, 230] meters longitudinally
and [-50, 50] meters laterally relative to the SDV. We focus on 5 object classes: vehicle, towed object
(e.g., trailer), cone, person and cyclist, where the latter two classes are severely under-represented in
the dataset due to their infrequencies on highways. Fig. 4 illustrates the class distribution and class
imbalance on these two datasets. Following previous works [5, 24], we adopt the mean average
precision (mAP) metric over distance thresholds of [0.5, 1, 2, 4] meters. For the aggregated metrics
(e.g., Many, Few), we take the average of mAPs from relevant object classes.

Implementation details. We adopt pre-trained OWL-Large [19] and M3D-Giant [21] for best
performance. In the camera proposal branch, we set N, IV, N, d to 1,1,20,10 for nuScenes and
increase the depth search range N, = 50,0 = 60 for Highway. Frustum-based attention employs
object self-attention followed by BEV feature map attention, for 2 repetitions. We follow sinusoidal
positional encoding according to [58]. Our refinement stage employs 2 repetitions of object-image-
LiDAR attention blocks. The frustum constraint in Fig. 3 requires the angle to camera origin between
proposal and ground truth to be less than 0.03 radians. Please refer to supp. for additional details.

Comparison with SOTA methods on nuScenes. We compare with previous works in the LT3D
benchmark [24], including SOTA general end-to-end learnable 3D detectors, and SOTA LT3D meth-
ods [5, 24] that address long-tailed performance specifically. Table 1 shows that FOMO-3D outper-
forms all existing methods on every aggregated object group. Not only does FOMO-3D boost the
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Figure 5: [Highway] Per-class mAP gains over the base LiDAR-only detector, for distance buckets [0, 50],
[50, 200] and [200, 230] meters relatives to the SDV. FOMO-3D (no cam prop) corresponds to Mo in Table 4.
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Figure 6: [Qualitative results] OWL successfully detects the child but has a false positive . The LiDAR-
only model misclassifies the child as an adult. FOMO-3D fuses multi-modal information and foundation model
priors to generate an accurate 3D bounding box of the child, while rejecting the false positive

mAP of Few from previous best 20.0 to 27.6, it also performs better on small objects in Many, e.g.,
cones and adults. Furthermore, per-class mAP results in Table 2 show that FOMO-3D outperforms
previous LT3D methods [5, 24] for almost every object class. Fig. 6 shows a qualitative result where
FOMO-3D successfully incorporates information from OWL to detect a child.

Long-range evaluation on ngh way. Table 3 Method Mod. Vehicle Towed Cone Person Cyclist
evaluates detectors on the long-range Highway FOMOL[L45 L 867 735 826 584 748
dataset. FOMO-L is CenterPoint [1] with refine-  MMF* [5] L+C 863 733 826 583 750
ment. For fair comparison, we re-implemented ~MMLF™[24]  L+C 866 734 830 583 762
the multi-modal filtering (MMF* [5]) and late- _FOMO-3D L+C 872 742 889 687 793
fusion (MMLF* [24]) techniques with the Li- Table 3: [Highway] mAP comparisons.

DAR detections in Row 1 and camera detections from OWL. For MMF that relies on 3D camera
detection centroids, we lift 2D OWL detection center to 3D with M3D depths. For long-range ob-
jects, M3D has bigger depth errors, leading to worse performance for MMF. In addition, occlusions
in busy highway traffic render image-space association unreliable, resulting in smaller gains from
MMLE. By contrast, FOMO-3D continues to exhibit large gains on all classes, showcasing its ability
to generalize to harder long-range scenarios. Fig. 5 further illustrates per-class mAP gains against
FOMO-L within three distance buckets [0, 50], [50, 200] and [200, 230] meters. The cyclist class
is not shown due to their absence in certain distance buckets. FOMO-3D’s consistent gains with
increasing distances especially for rare classes highlight its strengths in long-range detection.

Ablation studies. To understand the effects of = "y prop Refine Cam Model A1L Many Medium Few

our multi-modal fusion design, we perform ab- v . L - 13 763 451 106

lations on both datasets. M; — My in Ta- M L L+«  OWL 534 80.1 590 247
ble 4 and the' po§itive gains of FOMO—ISD (no %i E:g i:g DE&]}V £28] ;7‘:2 % 23:2 gi

cam Props) in Fig. 5 show that adding camera Table 4: [nuScenes] Ablations.

attention on top of a LiDAR-only model leads

to big gains due to rich image semantics. Furthermore, Ms — M, and the gains of FOMO-3D over
FOMO-3D (no cam props) in Fig. 5 show that camera proposals are indeed complementary and
help capture less common and/or distant objects. Finally, to justify using OWL for long-tailed detec-
tion, we replace OWL with a 2D detector DETR [28] trained on the 2D detection dataset nulmages
which follows similar class distributions as nuScenes. The improvement from M3 to My in Table 4
shows that FOMO-3D’s success on rare classes is indeed attributed to rich priors from OWL.

5 Conclusion

In this paper, we propose FOMO-3D, the first multi-modal 3D detector that leverages vision foun-
dation models for closed-set 3D object detection. Specifically, our two-stage model incorporates
image-based detections and features from OWL and monocular metric depths from Metric3D with
a novel camera-based proposal branch and cross-camera-attention in the refinement stage. On both
urban and highway datasets, FOMO-3D outperforms SOTA 3D detectors and LT3D methods es-
pecially on long-tailed classes and long-range objects, and ablation experiments validate the effec-
tiveness of foundation model priors and our multi-modal fusion design. With the ability to apply
powerful foundation models to a downstream long-tailed 3D object detection problem, FOMO-3D
is a step towards safer autonomy systems capable of generalizing to rare or unseen events.



6 Limitations

FOMO-3D employs heavy image foundation models OWL-Large [19] and Metric3D-Giant [21],
which are computationally expensive to run, especially with multiple cameras. As a result, FOMO-
3D does not run in real-time, and is therefore better suited as an offline perception algorithm [60,
61, 62] which allows a higher compute budget with applications in auto-labelling. To leverage
foundation model priors for onboard detection, a future direction is to distill foundation models into
smaller models that can run in real-time.

Furthermore, in this work, we take off-the-shelf OWL and Metric3D models and use their zero-shot
results directly. Although the zero-shot detections and depth estimations are impressive, they are
not perfect. One failure mode is that OWL semantics may be misaligned with respect to specific
class definitions in a particular dataset. For instance, classes that are described similarly in OWL’s
internet training corpus (e.g., truck and trailer) may need to be distinguished in driving datasets.
As a result, pre-trained models may confuse these classes and introduce an information bottleneck
compared to processing input images directly. To address this limitation, a future direction is to fine-
tune pre-trained foundation models on the downstream dataset, with the goal of improving semantic
alignment while preserving useful priors for long-tailed classes.
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Supplementary Materials

A Method Details

A.1 Background: Attention

We use the attention [58] mechanism heavily to update object queries with other information in the
scene. Here, we provide mathematical details of the attention operation.

Attention takes as input a set of NV object queries Q € RY*?, a set of M keys K € RM*" and a set
of M values V € RM** to output
SET
A = softmax ( Q
Vi

dy, is the softmax temperature term, and for brevity Q@ € RN*! K e RM*! V ¢ RMxd
denote linear projections of Q,K,V with Q = QP,, K = KP;, and V = VP,, and
P, € R P, € R P, € R¥*? respectively. Output A is designed to capture values that
are relevant to queries, based on the similarity between keys and queries. The attention function
is general and object queries can absorb different types of information depending on the choice
of K and V. In practice, a multi-head attention (MHA) variation is used for increased expressiv-
ity. MHA simply projects Q, K,V with m different projections onto latent dimensions of sizes
k/m, k/m,v/m. Then the outputs of attention for each projection are concatenated together. Under
popular transformer nomenclature, we also refer to queries, keys, and values generally as tokens.

)\7 € RV, (3)

Transformer layers typically use feed-forward networks (FFN) in conjunction with attention for best
results [58, 45]. Following common transformer architectures, we update object queries following:

A =LN(Q + MHA(Q,K,V)) “)
Q < LN(A +FFN(A)). ©)

Here LN denotes layer normalization [63].

A.2 Attention-based Refinement Stage

Following the two-stage detection paradigm, in a second refinement stage FOMO-3D employs
query-based detection to refine all proposals from the first stage. Different from the frustum-based
attentions catered to refining camera proposals in the object frustum region, here we rely on more
general attention mechanisms to refine the multi-modal proposals in the BEV space.

Refinement starts with initializing object queries. From the LiDAR proposal branch, each proposal
initializes a query using the feature vector from Fy;4,, which decoded the box. On the other hand,
queries from the camera proposal branch are taken directly for continued refinement. We then take
the union of these proposals and apply non-maximum suppression (NMS) to remove duplicates.
Queries are then refined iteratively through a series of transformer decoder layers. We adopt several
kinds of attention layers to model complex correlations between object queries and multi-sensor
inputs in an end-to-end manner, which we detail below.

LiDAR Cross-Attention adopts the BEV LiDAR feature map F;4,, and flattens the feature map
to obtain a set of key-value LiDAR feature tokens. Concretely, for Figar € RY=*Ys*P | we flatten
it to obtain V| x Vy’ LiDAR feature tokens each with dimension D, and we set the values to be
the same as the keys in the attention operation. Different from the LiDAR-based proposal stage
where each proposal is decoded from features from convolution-backbones and subject to receptive
field constraints, the attention mechanism enables object queries to attend to spatially distant LiDAR
tokens. This allows object queries to incorporate additional information from the input point cloud.

However, since the feature map is a dense representation of the scene, attending to all LIDAR feature
tokens is infeasible to scale. For efficiency reasons, we employ deformable attention [59] - learning
a set of spatial offsets which is added to the object query’s location to derive a sparse set of key-value
LiDAR tokens. Specifically, for each object query ¢, with initial 3D position q, = (py, py, D), We
apply a lightweight MLP to g to decode a few 2D spatial offsets { (5 ;, J, )}, and add to the BEV
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location (pg,py) to obtain {(ps + x5, Py + 0y,:) }. We then locate the associated LiDAR tokens at
these BEV locations, and apply the attention mechanism in Sec. A.1 between each query q and the
sampled LiDAR tokens.

Camera Cross-Attention incorporates information from cameras, which contains rich semantic
cues essential for accurately classifying the object queries. In this attention layer object queries
cross attend to OWL tokens F,,,; which capture semantic and contextual information from the
image. Note that we attend to the 2D camera features here, different from the previous attention to
image features lifted to BEV.

To handle multi-camera inputs, we factorize the attention over each individual camera, and apply
adaptive mean pooling to aggregate features across multiple cameras. Specifically, for a proposal
with initial 3D position q,, with all valid projections {(u;,v,)} in camera j, we first apply an MLP
to query feature ¢ to obtain a set of 2D offsets {(J,, ;,1, 9y, j,;)} unique to each (u;,v;). Then, we
retrieve the set of OWL tokens at each offset location .F(Eﬁfl) = {Fowt,j(uj 4 0u i, vj + v 51)}, and
MHA at each valid camera yields

A = MHA(Q, F%), Floo)y ©6)

owl 7Y owl

We next apply mean pooling among all attention matrices across valid cameras:
A = Mean({A()}). (7)

Then we apply A to update q based on Eq. 4.

Object Self-Attention designates object queries as the key-value tokens as well. This enables the
model to exploit correlations between different traffic participants in the scene. The semantic class,
object pose, and geometry can all be improved via object relationship cues. For example, children on
the street are often accompanied by adults while parking lot vehicles are usually parked in parallel.
However, exploiting object relationship cues is highly reliant on understanding the relative positions
between object queries. As positional information has yet to be encoded upstream, we also encode
each query with positional embedding q*) + q*) + PE(qZ(,i)) prior to self-attention. Our positional
encoding applies sinusoidal positional encoding from [58] followed by a 3-layer MLP.

Our transformer architecture interleaves multiple repetitions of LiDAR-camera-object attention
“blocks”. This facilitates learning complex relationships between diverse traffic participants and
multi-sensory inputs. Moreover, after each block, we decode each object query into a detection via
a lightweight MLP. This enables more dense supervision on intermediate outputs of the transformer,
while also allowing refinement to happen in an iterative manner.

A.3 Loss Functions

For the camera-based proposal branch and refinement stage, we apply DETR-style matching [28]
to pair ground-truth labels with detections, and compute a box regression loss and a classification
loss. For the camera-based proposal, we additionally add a frustum-based hard constraint during
matching. We next detail the matching and losses.

Given N 3D detections and M ground-truths, we first apply Hungarian-based matching based
on a cost matrix C € RM*M where C;; indicates the score between the detection b; =

(T35 Yi, i, liy wi, by, 0] and ground-truth b} = [x7, y7, 27, 15, w}, k7, 07]. Specifically,

Cij = )\giouGIOU(bi, b;k) + )\12 ||LOC(bi) — LOC(b;)HQ, (8)

where GIoU is the 3D generalized IoU [64], Loc(b) = [z, y, 2, [, w, h] is the centroid and dimension
of the 3D box, and Agy;0, and );, are hyperparameters.

In addition, for the camera proposal branch, we compute whether the ground-truth b} falls inside
the object frustum of detection b; as follows: we first transform both 3D boxes from the reference
frame to the camera frame with the camera extrinsics matrix [R|[t] to obtain b§*™ and b**™. Then
for any bounding box b in the camera frame, we compute the angles between the box and the camera
as ®(b) = (arctan(x/z), arctan(y/z)), and then we can derive

in_frustum(i, ) = (|(b<™) — B(b* ™) 5 < ag) and (|27 — 2 < a)  (9)
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where the first condition compares the camera angles between the detection and ground-truth and
constrains the differences to be under a threshold a4 (set to 0.03 radians in practice), and the second
condition constrains the depths of the two boxes to be no more than «, apart (set to 5 meters for
nuScenes and 30 meters for Highway). If in_frustum(i, j) is False, we set the corresponding C;; to
inf.

With the computed cost matrix C, we conduct Hungarian Matching to assign a ground-truth box
for each detection. If the associated matching cost is inf, we discard the matching and the associ-
ated detection will remain unmatched. For each matched detection, ground-truth pair (b;, b}), we
compute a box regression loss:

Ebom(bzﬁbj) = _/\giouGIOU(bi;b:) (10)
+ Aayz(zi — 27| + e — yi | + [z — 271]) (11)
+ Xwn (1l = || + |lwi — wil| + [[hi — h7]) (12)

where Az, = 0.2 and Ay, = 0.04 in practice.

In addition, for each detection 4 with object class logits ¢; € R where C is the total number of
object classes, we set the ground-truth ¢} € R as follows: if the detection is matched to a ground-
truth label with class 1 < k£ < C, then we set ¢} to be a one-hot vector with 1 at the Eth position,
otherwise c; is a zero vector. Then

Leiass(ci, c;) = SigmoidFocalLoss(c;, ¢}) (13)

where the SigmoidFocalLoss first applies sigmoid to the logits c; and then uses focal loss [9].
The final loss is
E =

1 * 1 *
N* E Eboac (bn bz ) + N E EClaSS(Ci) C; ) (14)
where N* is the number of matched pairs.

B Implementation Details

B.1 OWL: Cropping and Prompting

OWL [19] usually preprocesses the input image by resizing it to a square image of fixed dimensions
(e.g., 960 by 960 pixels for OWL-Medium, and 1008 by 1008 pixels for OWL-Large). If the input
image is a rectangular image, it will pad it to a square and then resize. To avoid information loss
from padding, we preprocess our input images preemptively by cropping the rectangular input image
into multiple square crops. For nuScenes, each input image is 1600 pixels by 900 pixels, and we
apply two crops by cropping the leftmost 900 x 900 pixels and rightmost 900 x 900 pixels of the
input image, and run inference with the two crops separately. We merge the 2D bounding boxes
from the two crops with concatenation and image-based 2D non-maximum suppression with iou
threshold 0.85. For camera-based proposal, each box is associated with the feature embedding from
the respective crop. For camera-attention during refinement, we zero-pad the feature map of each
crop to the original dimension (right-pad for the leftmost crop, and left-pad for the rightmost crop),
stack them, and apply a lightweight convolutional network to generate a unified feature map of the
same size as the input rectangular image. The convolutional network is:

x_proj = Conv2d(in=768%2, out=256, kernel=1) (x)
= Conv2d(in=256, out=256, kernel=3) (x_proj)

= GroupNorm(num_groups=8, out=256) (x)

= GELU(x)

Conv2d(in=256, out=256, kernel=3) (x_proj)

= GroupNorm(num_groups=8, out=256) (x)

= GELU(x)

= X + X_proj

LT T T T T
1]

To prompt OWL for 2D detection boxes, we use the following prompts for nuScenes:
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vehicle.car: ["a car"]

vehicle.truck: ["a truck"]

vehicle.trailer: ["a trailer"]

vehicle.construction: ["a construction vehicle"]

vehicle.bicycle: ["a bicycle"]

vehicle.motorcycle: ["a motorcycle"]

vehicle.bus: ["a bus"]

vehicle.emergency: ["a police vehicle", "an ambulance"]

pedestrian.adult: ["a person"]

pedestrian.child: ["a child"]

pedestrian.stroller: ["a stroller"]

pedestrian.construction_worker: ["a construction worker"]

pedestrian.police_officer: ["a police officer"]

pedestrian.personal_mobility: ["a scooter", "a wheelchair"]

movable_object.trafficcone: ["a traffic cone"]

movable_object.pushable_pullable: ["a dolley", "a wheel barrow",
"a shopping cart", "a garbage bin"]

If an object class corresponds to multiple prompts, then all boxes associated with the prompt belong
to this object class. Note that we do not have prompts for barriers and debris because OWL tends
to generate a lot of false positives for these two classes. In addition, we found that “a person” is a
better prompt for adult.

OWL outputs each 2D box with an affinity score for each prompt. We take the argmax of the affinity
scores and assigns the object class associated with the argmax prompt to be the class of the 2D box.
Before feeding the list of boxes to the camera proposal branch, we additionally perform per-prompt
score-based filtering to filter out low confidence 2D boxes. Specifically, we set the confidence score
threshold to 0.2 for car, truck, trailer, bus, construction vehicle, police vehicle, stroller, scooter and
wheel barrow, 0.15 for bicycle, motorcycle, wheelchair, traffic cone, dolley and shopping cart, 0.1
for ambulance, person, child, construction worker, police officer, and 0.3 for garbage bin.

B.2 Proposal Stage

For nuScenes, we use LiDAR points within distance [—54, 54], [—54, 54] and [—5, 3] meters for the
x, y, z directions respectively. For Highway, we use a longer x range [0, 235] meters along x. For
voxelization of both LiDAR and image point clouds, the voxel size is (7.5, 7.5, 20) centimeters along
x, y and z. for nuScenes and 15.625cm for Highway.

For the LiDAR-only branch, we follow the group-free wide-512-channel header CenterPoint imple-
mentation from the LT3D codebase [5] exactly. We did not apply the hierarchical heuristic as we
did not find it to help with performance in our experiments.

For the camera-based branch, we provide more details of the model architecture.

Query Initialization and Image Point Cloud Encoding The camera proposal branch first applies
OWL to the input image with details specified in Sec. B.1 to obtain a set of 2D detection boxes with
associated OWL tokens that decode each box. Each OWL token is a feature vector € R'0%4. For
each box, we sample the M3D depth map at the 2D box center with nearest neighbor interpolation
to obtain the initial depth. As M3D can produce degenerate zero depths, we discard the 2D box if
the depth is < 0.5. The remaining 2D boxes are initialized as queries to lift to 3D.

For each pixel inside any valid 2D detection, we query the M3D depth map and lift the pixel if the
associated M3D depth confidence is > 0.5. The lifted pixels form a 3D pseudo image-based feature
point cloud, where each point is associated with an OWL token of dimension 1024. We then process
the lifted point cloud with a feature encoder and construct a BEV image-based feature map.

The feature encoder consists of a sparse voxelizer followed by a sparse 3D feature extractor. The
voxelizer first voxelizes the 3D point cloud into V; x V,, x V, voxels based on the range of interest
and voxel sizes specified above. It applies a linear layer to each point-based feature to reduce feature
dimension from 1024 to 256, and encodes the xyz position with positional encoding followed by an
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MLP to add to the reduced feature. To aggregate point features inside each voxel cell, we mean
pool all available point features as the voxel feature. The resulting sparse voxel feature grid is of
dimension V,; x V,, x V, x 256. We use a sparse voxelizer that only keeps track of occupied voxels
for memory efficiency.

Then, we apply the sparse 3D encoder to the image-based voxel feature grid. To simplify nota-
tion, we use Conv3d(in=128, out=128, k=3, s=1, bias=False) to denote a 3D sparse con-
volution layer with input channels 128, output channels 128, kernel size 3 x 3 x 3, stride size
1x1x1 and no bias. The sparse 3D encoder consists of Conv3d (in=256, out=128, k=3, s=1,
bias=False), followed by BatchNorm (BN), ReLU, and two repetitions of Conv3d(in=128,
out=128, k=3, s=1, bias=False) — BN — ReLU — Conv3d(in=128, out=128, k=3,
s=1, bias=False) — BN. For each voxel cell, we further apply a linear layer to the feature
with input and output dim 128 and bias=True. Next, we squash the 3D voxel grid to BEV by
mean pooling the features along the z dimension. The BEV feature map goes through a dense
block of Conv2d(in=128, out=128, k=3, s=1, bias=False) — BN — Conv2d(in=128,
out=128, k=3, s=1, bias=False) — BN — ReLU, and then a sequence of Conv2d (in=128,
out=256, k=1, s=1, bias=False) — BN — ReLU to finally decode a BEV feature map of
size V; x V,, x 256.

Frustum-based Attention For each feature initialized with OWL tokens € R'924 and positional
encodings over xyz and uvd, we first apply a lightweight MLP with Linear (in=1024, out=512,
bias=False) — LayerNorm (LN) — ReLU — Linear(in=512, out=512, bias=False) —
LN — ReLU — Linear(in=512, out=512, bias=False) to reduce feature dimension to 512.
To include classification information from OWL, we also encode the OWL class logits that represent
the affinity score between the detection and all prompts. We encode the OWL class logits with
an MLP that has a similar architecture to the feature dimension reduction MLP except the input
dimension of the very first linear layer is the number of OWL prompts. We add these two encodings
as the updated query feature to be used in the attention operations.

To efficiently sample features from the merged LiDAR and image BEV feature map, we sam-
ple along frustum rays as detailed in the main paper. We then apply two repetitions of attention
blocks, where each block starts with an object-to-object self-attention, and an object-to-sampled-
BEV-features cross-attention. The attention layer [58] follows Sec. A.1 and is a standard pytorch
TransformerEncoderLayer layer with the attention operation followed by two FFNs. Both the
object-to-object self-attention and the object-to-BEV-feature cross-attention layers are a single trans-
former encoder block with 8 attention heads, input and FFN feature dimension 512, bias=False and
dropout=0.1.

At the end of each attention block, we use a lightweight MLP to decode the 3D proposal box pa-
rameters. The box decoder is a sequence of Linear (in=512, out=256, bias=False) — LN
— ReLLU — Linear(in=256, out=256, bias=False) — LN — ReLU — Linear(in=256,
out=8, bias=False) to decode (z,y, 2,1, w, h,sin(6), cos(d)). After the first attention block, we
update the query 3D position with the decoded 3D box, and re-sample the BEV features based on
the new 3D position to cross-attend to in the second attention block. After the second attention
block, we additionally use a lightweight MLP to decode the proposal object class heatmap ¢ € R€.
The class decoder is a sequence of Linear (in=512, out=256, bias=False) — LN — ReLU
— Linear(in=256, out=256, bias=False) — LN — ReLU — Linear(in=256, out=C,
bias=False) to output a logit for each of the C' classes. During training, we supervise both sets of
the 3D proposal box parameters, and the final class logits.

Multi-Modal Proposal Aggregation At the end of the multi-modal proposal stage, we first filter
dense LiDAR proposals as follows: we filter out detections with confidence < (.01 (confidence
at BEV pixel (¢, j) is maxy, Sigmoid(h;;i)), apply non-maximum suppression (NMS) with IoU
threshold 0.2 in the 2D BEV space, and keep top 500 detections with the highest confidence scores.
Next, we aggregate both LiDAR and camera 3D proposals with BEV-space NMS with IoU threshold
0.2. In addition, in practice we found that for nuScenes the camera-proposal branch gives the best
performance when it is used to lift small and/or rare objects complementary to the LiDAR proposals.
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mAPy Method Car Adult Truck CvV Bicycle MC Child CW Stroller PP

MMF [5] 88.5 86.6 63.4 29.0 58.5 68.2 53 35.8 31.6 39.3
LCAO MMLEF [24] 86.3 87.7 60.6 353 70.0 759 8.8 559 37.7 58.1
FOMO-3D 88.9 90.7 65.1 36.6 72.8 80.2 29.8 60.2 40.1 50.0
MMF [5] 89.4 87.4 724 31.3 61.2 69.7 15.2 52.0 37.7 39.4
LCAl MMLEF [24] 86.8 88.3 68.5 37.3 70.4 717.1 16.2 66.0 51.5 58.2
FOMO-3D 89.4 91.2 70.3 39.2 739 81.5 59.2 73.4 54.8 50.1
MMF [5] 89.5 87.7 72.5 31.5 62.3 69.9 16.9 56.3 38.8 39.8
LCA2 MMLEF [24] 86.9 88.6 68.6 37.7 70.9 774 16.3 69.0 524 58.9

FOMO-3D 89.5 91.5 70.4 39.7 74.9 81.9 59.5 771 58.2 50.6

Table 5: [nuScenes] Class-specific hierarchical metrics. CV = Construction Vehicle. MC = Motorcycle. CW
= Construction Worker. PP = Pushable-Pullable. Medium and Few classes are in blue.

As a result, in practice, we remove camera proposals for car, trailer, truck, bus and construction
vehicle classes before refinement.

B.3 Refinement Stage

In this subsection we provide more details with the transformer layers used in object-LiDAR-camera
attention blocks. First, as explained in the main paper, the object query features € R?%% are initial-
ized from either the LiDAR features or the camera object queries. Both the deformable attention
blocks in LiDAR and camera cross-attention employ a linear layer with input dim 256 and output
dim 2 to sample 2D offsets. The cross-attention transformer layers have 8 attention heads with input
dim 256, FFN feature dim 1024, bias=False, and drop out=0.1. The self-attention transformer layer
has 8 attention heads with input dim 256, FFN feature dim 256, bias=False, and drop out=0.1.

After each object-camera-LiDAR attention block, we apply a lightweight box decoder and a class
decoder. The box decoder is a sequence of Linear (in=256, out=256, bias=False) — LN
— ReLU — Linear (in=256, out=256, bias=False) — LN — ReLU — Linear (in=256,
out=7, bias=False) to decode (z,y, z,[, w, h, ) box parameters. The class decoder is a se-
quence of Linear (in=256, out=256, bias=False) — LN — ReLU — Linear(in=256,
out=C, bias=False) to decode logits for C classes. During training we supervise both sets of
3D boxes.

C Additional Experiments Results

nuScenes results with hierarchical mAP. Following previous works [5, 24], we also adopt the
hierarchical mAPs (1A Py ), which reports mAP with three tiers based on the least common ancestor
(LCA) distance: LCAO is the standard per-class mAP, LCAI treats each object class as one of
the three parent classes (vehicle, pedestrian, movable object) and tolerates misclassification with
sibling classes, and LCA2 measures class-agnostic mAP on nuScenes. Table 5 showcases per-class
hierarchical metrics, comparing ours against previous LT3D methods [5, 24]. FOMO-3D improves
the hierarchical metrics for almost all classes in all three LCA tiers, showing that FOMO-3D is not
only better at fine-grained classification for almost all object classes at LCAO, but also improves the
general localization and detection quality at LCA1 and LCA2 as well.

Frustum Attention All Many Medium Few

53.6 809 58.6 251
v 546 799 596 276

Table 6: [nuScenes] Frustum attention ablation.

Frustum Attention ~ Vehicle = Towed  Cone  Person  Cyclist

87.0 73.6 86.9 64.1 76.4
v 87.2 74.2 88.9 68.7 79.3

Table 7: [Highway] Frustum attention ablation.
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Effect of frustum attention. In the camera-based proposal branch, we initialize object queries
with 2D OWL detection bounding boxes and associated OWL features and M3D depths, refine the
features with frustum-based attention, and decode 3D bounding boxes as camera-based proposals.
Here we ablate the effect of frustum attention with an experiment where the camera-based proposal
branch learns to decode a 3D box directly from the initial query features. Table 6 and Table 7 show
results on the nuScenes and Highway datasets respectively and demonstrate that overall frustum
attention is effective, especially on rare classes and in the long-range Highway setting with more
apparent depth errors.

Z
=z
2
o

All Many Medium Few

20 10 535 79.8 582 261
20 10 55.0 80.2 593 29.0
546 799 591 282
40 10 543 798 588 279
10 4 538 79.6 588 263
10 25 526 799 59.1 228

1 1 20 10 546 799 596 27.6
Table 8: [nuScenes] Sampling resolution ablation.
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Effect of frustum attention sampling grid resolution. In frustum attention, we construct a mesh
grid to sample from frustum features for computational efficiency. Table 8 showcases how various
combinations of (N, N,, N, ) affect the final performance. Better performance is achieved with
more sampling rays (i.e., bigger N, and N,) but with heavier computation costs. We chose the
hyperparameters in the final row to balance computation and performance.

Method Frustum-based Loss Constraint All Many Medium Few
M, 54.0 80.3 59.5 25.8
Ms (FOMO-3D) v 54.6 79.9 59.6 27.6

Table 9: [nuScenes] Ablation for frustum-based matching constraint in camera proposals.

Effect of frustum-based matching loss. When training the camera proposals, we add a hard
constraint in detection to ground-truth label matching that the ground-truth label must be present in
the detection frustum space. We perform an ablation on the nuScenes dataset to compare with using
regular IoU-based matching without the frustum-based hard constraint. Table 9 shows that with this
hard constraint (M; — M), the mAP for Few is two points better.

Method Depth Estimator A1l Many Medium Few

My LiDAR 53.0 799 589 237

Mo M3D Rescaled 53.5 799 589 252

M3 (FOMO-3D) M3D 546 799 596 276

Table 10: [nuScenes] LiDAR depth ablations.

Alternative depths. To understand the effect of using M3D depths, we ablate (1) replacing M3D
with (sparse) LiDAR depths, and (2) rescaling M3D depths with LiDAR depths with bucketized
median scaling at near (Om-10m), medium (10-30m), and far (30m+) ranges. Table 10 shows that
using dense M3D depths directly on the nuScenes dataset has the best results.

Camera LiDAR Object All Many Medium Few

v v 410 76.1 453 6.7
v v’ 520 80.0 583 234
v v 541 81.0 60.1 248
v v v 546 799 596 276

Table 11: [nuScenes] Refinement type ablations.
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Method  Prop  Refine  Vehicle = Towed Cone  Person  Cyclist

My L L 86.7 73.5 82.6 58.4 74.8
Mo L L+C 86.9 73.8 86.0 65.4 71.7
M3 L+C L+C 87.2 74.2 88.9 68.7 79.3

Table 12: [Highway] Ablations.

Effect of refinement modules. To understand how each type of refinement attention in the refine-
ment stage contributes to the final performance, Table 11 ablates each attention type in the nuScenes
dataset, and shows that all of them are key to maximizing performance on long-tailed detection.

Ablation table on Highway. In the main paper, the ablation results for the Highway dataset is
presented in terms of net gains over the LiDAR-only model in Fig. 5. For completeness, Table 12
shows the detailed numerical metrics for the lidar-only model, lidar-proposal + multi-modal refine-
ment, and multi-modal proposal + multi-modal refinement respectively. The results show that both
camera proposal and camera attention during refinement are helpful.

Method Proposal Stage Fusion ~ Learned Depth A1l Many  Medium Few
M, Feature-level 54.8 80.2 60.6 26.9
Mo Feature-level v 533 79.6 59.0 24.7
M3 (FOMO-3D) Late 54.6 79.9 59.6 27.6

Table 13: [nuScenes] Explorations for alternative proposal-level fusion strategies.

Alternative fusion strategies. In the proposal stage of FOMO-3D, we adopt a late-fusion design
where we merge the LiDAR-based 3D proposals and camera-based 3D proposals in the end. Alter-
natively, due to the effectiveness of feature-level fusion in BEVFusion [2], it is also worth exploring
feature-level fusion with OWL features in the proposal stage. We therefore designed two alternative
proposal-level fusion strategies for exploration.

In the first method, we replace the proposal stage with a dense feature lifting design, where we lift
every OWL token in the image with respective M3D depths, fuse with the LiDAR features with
concatenation, and decode a single set of 3D proposals to be refined later. This fusion strategy is
similar to BEVFusion, except we are only using a single depth from M3D instead of learning and
lifting with a depth distribution.

In the second method, instead of lifting with the M3D depth directly, we use a learned depth based
on M3D. We first create 20 scale factors that are based on uniform intervals in [0.5, 1.5), i.e., s =
[0.5,0.55,0.6,...,1.45] € R2Y. Each scale factor will be multiplied with the original M3D depth
to create 20 depth buckets. We then apply a lightweight MLP on each OWL token to learn p €
R?9, representing the confidence of each depth bucket. We finally aggregate the learned depth with
d =5 Z:io 8; - p; - d where d is the original M3D depth, and p; is the respective confidence in
Softmax(p). We lift every OWL token with the learned depth, fuse with the LiDAR features similar
to the first method and decode a single set of proposals. Compared to the first method, the second
method has more flexibility to correct depth errors. Unlike BEVFusion, we do not lift the same
token with multiple depths due to memory constraints.

Table 13 shows the comparison for these two alternative fusion methods against FOMO-3D on the
nuScenes dataset. Interestingly, the feature-level fusion method that uses M3D depth directly (M)
has comparable performance with FOMO-3D, thanks to M3D’s accurate zero-shot depths in the
short evaluation range of nuScenes [21]. The learned depth version (M>) is slightly worse, possibly
due to the fact that the learned depth introduces more noises to the already accurate M3D initializa-
tions. In addition, it’s worth noting that M has noticeably better performance on the Medium group,

Method Proposal Stage Fusion ~ Learned Depth ~ Vehicle ~ Towed  Cone  Person  Cyclist
M,y Feature-level 86.1 71.7 86.5 64.6 76.4
Mo Feature-level v 87.0 73.7 87.0 64.2 74.7
M3 (FOMO-3D) Late 87.2 74.2 88.9 68.7 79.3

Table 14: [Highway] Explorations for alternative proposal-level fusion strategies.
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which implies that directly using all features without any prompting combined with feature-level
fusion could be very effective at exploiting 2D foundation models when the depth is very accurate.
However, on the Highway dataset with challenging longer evaluation ranges, M3D has more errors
especially in the far range. As a result, naively lifting and fusing with M3D depths results in worse
performance for M in Table 14, and learned depths over depth buckets M, is overall better than
M;. FOMO-3D outperforms both these baselines, which shows that FOMO-3D’s camera proposal
branch with more elaborate 3D lifting and attention-based multi-modal fusion strategies is more
robust to M3D depth errors and more effective at lifting 2D foundation model priors to 3D.

Latency and Memory. Benchmarking nuScenes inference on an RTX A5000 GPU yields 79.8ms
for lidar proposal (CenterPoint), 97.7ms for camera proposal (excluding foundation model infer-
ence), and 131.2ms for refinement, with 18G memory usage. This is comparable with 80.7ms for
CenterPoint, 321.4ms for FUTR3D, 119.2ms for BEVFusion reported in the BEVFusion paper [2].
These modules can be optimized with custom CUDA kernels to reduce the gap with e.g. BEVFu-
sion, but real-time inference is beyond the scope of this work. Based on the official implementation
of M3D-Giant and HuggingFace implementation of OWLv2-Large, inference time is 1590 ms per
image for M3D and 834 ms per image crop (960 x 960 pixels) for OWL. During training and evalu-
ation, we cache M3D/OWL outputs as a one-time pre-processing step, so these costs are negligible.
As addressed in the limitations section, improving run time for real-time applications is an exciting
direction for future research (e.g., distillation into a smaller model).

Additional qualitative results for nuScenes. Fig. 7, 8, 9, 10 and 11 provide more qualitative
examples on the nuScenes dataset. In general, the LIDAR-only model often misses small and/or rare
objects such as cone, adult and construction worker. OWL has great zero-shot detections for these
small objects, but can have false positives especially when there are true positives in the local region.
FOMO-3D is able to recover small and/or rare objects in most cases, with some misclassification
and false positive failure cases discussed in Fig. 8 and Fig. 11.

Additional qualitative results for Highway. Fig. 12, 13, 14 and 15 provide qualitative examples
on the Highway dataset. In general, although OWL has impressive zero-shot 2D detection boxes,
it oftentimes outputs false positives and confuses vehicle and towed object classes. LiDAR-only
detections learn to distinguish between vehicles and towed objects in most cases, but confuse cone
with person (due to their similar cylindrical geometries and smaller sizes) and tends to output false
positives around spurious LiDAR points. FOMO-3D is able to leverage both 2D and 3D information
for correct detection and classification. For truck/trailer confusion, FOMO-3D shares similar failure
cases as the LiDAR-only model.
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Figure 7: [nuScenes] Qualitative example #1. In this example, we added OWL prompts for barriers to il-
lustrate low-quality zero-shot barrier detections. As shown in the visualization, OWL produces many false
positive barriers without capturing most of the true positive barriers. As a result we removed barrier prompting
from the camera proposal branch. In addition, the LiDAR-only model misses small objects such as cones and
construction workers, but OWL and FOMO-3D are able to detect them successfully.
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Figure 8: [nuScenes] Qualitative example #2. In this example, OWL correctly detects and classifies an adult
and an emergency vehicle. The LiDAR-only model misses the adult (because it is small and sparsely observed
by LiDAR) and misclassifies the emergency vehicle as car due to lack of semantics. FOMO-3D is able to suc-
cessfully detect the adult thanks to OWL, but fails to retain the original OWL emergency vehicle classification.
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Figure 9: [nuScenes] Qualitative example #3. In this example, the LiDAR-only model fails to detect a cone
and a construction vehicle, while FOMO-3D is able to detect and classify them successfully.
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Figure 10: [nuScenes] Qualitative example #4. In this example, the LIDAR-only model fails to detect an adult
and a construction worker and also outputs a false positive bicycle, while FOMO-3D is able to detect them
successfully while rejecting the false positive.
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Figure 11: [nuScenes] Qualitative example #5. This example shows a failure case of OWL and FOMO-3D.
OWL produces many duplicated construction workers. While FOMO-3D lifts them to the correct construction
worker size, it fails to reject some duplicated false positives in the final detections. This is a challenging case
because these false positives are adjacent to true positives in the image. False positives can be generated in the
camera proposal stage directly from OWL proposals. In the refinement stage, many proposals which project
onto the same image region could pick up features describing construction workers, and multiple proposals can
attend to the same image features to generate these false positives. Designing a more optimal false positive and
duplicate removal method is a future direction to improve FOMO-3D.
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Figure 12: [Highway] Qualitative example #1. Green denotes vehicle. Purple denotes towed object. Blue de-
notes cyclists. Orange denotes person. denotes cone. Opacity of the boxes reflects detection confidence
(higher confidence corresponds to more solid lines). FP=False Positive. FOMO-3D is able to correct various
errors in OWL and LiDAR-only detections, but still mis-classifies a truck as trailer.
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Figure 13: [Highway] Qualitative example #2. Green denotes vehicle. Purple denotes towed object. Blue
denotes cyclists. Orange denotes person. denotes cone. Opacity of the boxes reflects detection con-
fidence (higher confidence corresponds to more solid lines). FP=False Positive. This example shows a very
dense traffic scene on the highway. OWL has impressive zero-shot 2D detections, but it also outputs a few
false positives. LiDAR-only model mis-classifies a vehicle as a cyclist, and also draws a false positive cone.
FOMO-3D is able to correctly classify in most cases without having many false positives. All three detectors
miss two cones on the right.
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Figure 14: [Highway] Qualitative example #3. Green denotes vehicle. Purple denotes towed object. Blue
denotes cyclists. Orange denotes person. denotes cone. Opacity of the boxes reflects detection con-
fidence (higher confidence corresponds to more solid lines). FP=False Positive. Unlike OWL, FOMO-3D is
able to utilize 3D LiDAR information and the training data to distinguish between vehicles and towed objects.
FOMO-3D is able to effectively fuse 3D and 2D information and learn from the training data. It also outputs
fewer false positives compared to the LIDAR-only model.
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Figure 15: [Highway] Qualitative example #4. Green denotes vehicle. Purple denotes towed object. Blue de-
notes cyclists. Orange denotes person. denotes cone. Opacity of the boxes reflects detection confidence
(higher confidence corresponds to more solid lines). FP=False Positive. In this example, the LiDAR-only model
misses the person on the right, while OWL is able to detect it. With effective multi-modal fusion, FOMO-3D
successfully detects the person.
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