GenAssets: Generating in-the-wild 3D Assets in Latent Space
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Figure 1. GenAssets takes in-the-wild camera image(s) and pomt cloud(s), and automatically reconstruct or generate 360° assets.
Our 3D assets are diverse and high-quality with complete geometry and appearance, allowing for realistic and scalable sensor simulation.
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Abstract

High-quality 3D assets for traffic participants are critical
Sfor multi-sensor simulation, which is essential for the safe
end-to-end development of autonomy. Building assets from
in-the-wild data is key for diversity and realism, but existing
neural-rendering based reconstruction methods are slow
and generate assets that render well only from viewpoints
close to the original observations, limiting their usefulness
in simulation. Recent diffusion-based generative models
build complete and diverse assets, but perform poorly on in-
the-wild driving scenes, where observed actors are captured
under sparse and limited fields of view, and are partially oc-
cluded. In this work, we propose a 3D latent diffusion model
that learns on in-the-wild LiDAR and camera data captured
by a sensor platform and generates high-quality 3D assets
with complete geometry and appearance. Key to our method
is a “reconstruct-then-generate” approach that first lever-
ages occlusion-aware neural rendering trained over multi-
ple scenes to build a high-quality latent space for objects,
and then trains a diffusion model that operates on the latent
space. We show our method outperforms existing recon-
struction and generation based methods, unlocking diverse
and scalable content creation for simulation. Please visit
https://waabi.ai/genassets for more details.

1. Introduction

Simulation environments enable testing the performance of
autonomy systems in long-tail and safety critical scenarios
safely, efficiently, and scalably [41, 61, 77, 98]. To test the
complete autonomy stack, the virtual environments should
simulate the sensor data (e.g., LIDAR, camera) of the robot.
Realistic and consistent sensor simulation across multiple
modalities depends on the availability of high-quality 3D
assets that accurately represent the geometry and appear-
ance of traffic participants such as cars and motorcycles.

Commoditized simulation environments rely on artists to
manually build such 3D assets [14, 59, 62]. This process is
slow, costly, and requires precise specification of attributes
such as geometry, UV mapping, and materials. As a conse-
quence, existing methods utilize very limited content, fail-
ing to capture the full diversity of objects in the real world.

An alternative and much more appealing approach that
has gained traction is to reconstruct assets from real world
data captured by the sensor platform, which enables diver-
sity and realism. Reconstruction-based neural rendering
methods have demonstrated impressive results by optimiz-
ing 3D representations that can render and match input sen-
sor data for self-driving scenes [11, 15, 29, 70, 74, 86, 94,
95, 98, 104]. These approaches render high-quality data
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when the viewpoint is close to the training views, but can
suffer from severe artifacts at novel viewpoints due to in-
complete observations. Additionally, each asset must be ob-
served in the real world and reconstructed via optimization,
making it computationally expensive and limiting diversity.

Recent 3D generative models [6, 7, 17, 47, 57, 63] have
shown promise in generating complete assets and render-
ing novel views far from source. These methods leverage
a combination of generative adversarial networks (GANSs),
diffusion models, and neural rendering, and train on large
corpuses of images to learn shape and appearance pri-
ors. NeRF-based diffusion models that optimize via score-
distillation sampling (SDS) [34, 52], or denoise in 3D space
[9, 20, 45, 48, 85], have demonstrated particularly high-
quality complete shape and appearance generation, and also
offer controllability through text/image conditioning. How-
ever, such models usually rely on synthetic datasets with
ground-truth 3D models to render the dense 2D views nec-
essary to learn a 3D representation prior. They also primar-
ily work on “clean” images that fully capture the object of
interest. This reliance on clean synthetic data limits their
ability to handle in-the-wild real data from a moving plat-
form, where the data is typically captured from sparse view-
points, under partial occlusions, limited resolution, and with
sensor noise (e.g., lighting artifacts, rolling shutter).

In this work, we propose a latent diffusion 3D generative
model that learns directly from sparse, in-the-wild data, en-
abling high-quality asset generation at scale. We tackle the
challenges of asset completion and generative modelling
via a two-stage “reconstruct-then-generate” methodology.
In the first stage, we learn a low-dimensional object la-
tent space that generates complete assets by training across
multiple scenes via neural rendering. To handle partial oc-
clusion, we jointly learn a scene representation for both
the static scene and dynamic actors, enabling occlusion-
aware rendering during learning. In the second stage, we
train a diffusion model to operate on the 3D latent space,
enabling realistic asset generation that can be conditioned
on individual views, day or night, or the actor class, en-
abling asset variations that are applicable to new scenes.
We evaluate our model on the public self-driving dataset
PandaSet [88], demonstrating its capability to reconstruct
and generate high-quality assets from sparse, in-the-wild
data. Additionally, we showcase applications such as con-
ditional generation, as well as realistic rendering of our as-
sets for downstream simulation systems, highlighting our
approach’s flexibility, scalability, and practical utility.

2. Related Work

3D Reconstruction in the Wild: Reconstructing objects
from in-the-wild data is essential for creating 3D digital
twins and simulations, but poses significant challenges due
to the complexity (e.g., occlusions, sparse viewpoints, par-

tial observations) and noise (e.g., localization and calibra-
tion inaccuracies [100], sensor noise). Object-based recon-
structions fall into optimizing explicit meshes [46, 78, 96]
or implicit representations [27, 43, 49, 80, 97, 99, 101]
methods via differentiable rendering. However, they rely
on accurate object segmentation masks and struggle to han-
dle complex occlusions. To address this issue, recent works
propose compositional neural fields [35, 50, 53, 74, 98] or
3D Gaussians [11, 29, 94] to decompose 3D world into
static background and dynamic actors. These works of-
ten involve costly per-scene optimizations and cannot gen-
eralize well to novel views with large shifts nor produce
complete (i.e., 360-degree) objects. To mitigate these lim-
itations, recent works propose generalizable reconstruction
models [10, 23, 44, 56, 83] that generate a 3D representation
with a single feed-forward network trained on many scenes.
Another line of work aims to incorporate data-driven pri-
ors from pre-trained models (e.g., stable diffusion [58]) via
score-distillation sampling (SDS) [25, 52, 81, 84]. How-
ever, existing methods either require object-centric syn-
thetic training data [23, 83, 84] (e.g., Objaverse [12]) and/or
perform poorly on in-the-wild sensor data [10, 25, 81]. Our
approach builds high-fidelity and complete assets by di-
rectly learning on real-world data.

GAN-based 3D Generation: Generative Adversarial
Networks [19] (GANs) have shown great potential for 3D
asset generation [17, 91], where the generator transforms
random noise into the target 3D representation, and the dis-
criminator is jointly trained using 2D images rendered from
the generated representation and the ground truth. This
paradigm allows generation without requiring explicit 3D
ground truth. Specifically, 7-GAN [6] introduces a genera-
tive model for high-quality 3D-aware image synthesis based
on neural radiance fields. GIRAFFE [47] further proposes
to represent scenes as compositional generative neural fea-
ture fields, allowing for better object-background disentan-
glement and controllable scene generation. EG3D [7] and
GET3D [17] further improve 3D generation efficiency and
quality by integrating the triplane representation (for vol-
ume rendering or explicit mesh rendering) with a StyleGAN
[28] architecture. Although they achieve robust and consis-
tent 3D generation, they primarily focus on “clean” object-
centric images with full coverage and no occlusions and
have difficulties generalizing to in-the-wild driving data.
Most recently, DiscoScene [91] and GINA-3D [63] learn
3D generative models from in-the-wild data. However, they
often produce significant visual artifacts (e.g., floating par-
ticles, low-fidelity shapes and texture). In contrast, our
method generates high-quality assets.

Diffusion-based 3D Generation: Diffusion-based meth-
ods have achieved tremendous success in image generation



[22, 51, 58, 67, 68], leveraging denoising diffusion prob-
abilistic models [22] to transform white noise into high-
quality outputs through iterative refinement. To bridge the
gap between 2D and 3D generation, a common strategy in-
volves lifting 2D images to 3D via score distillation sam-
pling (SDS) [18, 25, 34, 52, 64, 71, 81, 84]. These meth-
ods rely on pre-trained or fine-tuned 2D diffusion models
and optimize 3D representations with diffusion-prior guid-
ance. The optimization is slow and the supervision can be
multi-view inconsistent. To address this issue, recent works
[32, 36, 37, 39, 64, 79] propose to synthesize multi-view
consistent images via diffusion models and then perform
3D reconstruction with explicit meshes [90], neural radi-
ance fields [32, 79] or 3D Gaussians [72, 93]. Another
line of work performs diffusion directly in 3D, either by
training 3D-aware diffusion model from posed 2D imges
without requiring explicit 3D supervision [1, 5, 9, 20, 45,
65, 69, 73, 87, 92] or by operating directly on 3D data
[38, 40, 75]. Inspired by latent diffusion models (LDM)
[58], recent works diffuse within a latent space, where mod-
els like UNet [60] or VAEs [30, 76] map 3D data to a com-
pressed latent representation for faster, higher-quality and
more scalable synthesis of both objects [57, 85] and large-
scale scenes [24, 42, 54, 55, 89, 102]. However, existing
works primarily focus on synthetic objects [9, 42] or static
scenes [24, 54, 55, 89] and cannot handle complex real-
world scenarios. In contrast, we propose a latent diffusion
3D generative model with compositional radiance fields that
learns directly from in-the-wild dynamic scenes, enabling
high-quality 3D asset generation at scale.

3. Method

Our goal is to build a generative model that can create
high-fidelity assets scalably for self-driving simulation. The
model should enable unconditional generation of diverse as-
sets for a variety of classes (e.g., cars, buses, trucks, pedes-
trians), and also support generating complete assets condi-
tioned on new in-the-wild camera images and LiDAR point
clouds for actors that may be occluded or far-away. Impor-
tantly, to avoid the quality degradation [9] that occurs when
generative models trained on synthetic data are transferred
to real data, our generative model should directly learn over
a corpus of real-world driving scenes collected by a robot
sensor platform. Towards this goal, we propose a two-stage
“reconstruct-then-generate” framework. In the first stage,
we jointly learn a set of latent codes through reconstruction-
based neural rendering, where each latent code represents
a foreground actor in our dataset. We devise a composi-
tional scene representation that enables rendering of actors
of driving scenes in an occlusion-aware manner, enabling
us to decouple the foreground actors from the background
(e.g., road, sky, vegetation). Fig. 2 provides an overview of
this process. In the second stage, we train a diffusion model

to learn generative priors in this asset latent space, enabling
the generation of realistic and diverse neural assets. This
enables both unconditional generation and conditional gen-
eration through score-based guidance. Fig. 3 shows the
overview of our latent asset diffusion model. We first in-
troduce our compositional scene representation (Sec. 3.1).
We then describe how we compress the actor representa-
tions into a latent space to learn the set of latent codes via
neural rendering (Sec. 3.2), and detail the diffusion process
in the latent space and the training process (Sec. 3.3).

3.1. Compositional Scene Representation

We aim to learn a generative 3D asset model from real-
world driving scenes. Unlike existing object-centric ap-
proaches [7, 9, 17, 18, 45, 48, 85], our sensor data contains
many actors captured under different viewpoint, distances,
and occlusions. To handle multiple instances and their oc-
clusions, we leverage a compositional scene representation.
Each scene is decomposed into a static background 3 and a
set of dynamic actors {A;}X |, with each actor enclosed
within a 3D box and localized by a trajectory of SE(3)
poses. We model the static background and dynamic ac-
tors with separate neural feature fields parameterized by tri-
plane representations [7]. Specifically, for each dynamic
actor’s volume, explicit features are aligned along three or-
thogonal planes, each with resolution N4 x N 4 x C, where
N 4 is the spatial resolution, and C'is the feature dimension.
Similarly, triplane features of resolution Nz x N x C rep-
resent the background volume. For a spatial query coor-
dinate x € R3, we project it onto each of the three feature
planes t = (t*¥,t*%, t¥#) and bilinearly interpolate the cor-
responding feature vectors. The interpolated features are
concatenated with view direction d € S? and processed by
an MLP network f., to yield geometry as a signed-distance
function (SDF) s and a neural feature f. This querying pro-
cess is defined by:

S, f= ffeal({interp(xpz tp)}pe{:vy,a;z,yz}a d)r (D

where xP represents the 2D projection of x onto feature
plane p. To render the scene representation, we first trans-
form the object-centric actor neural feature fields to world
coordinates similar to [74, 98]. Then we composite the
background and actor feature fields. The composited geom-
etry and appearance features are then rendered into sensor
observations through neural volume rendering.

3.2. Learning Latent Asset Representations

Encoding to a Latent Space: Per-scene reconstruction
methods [74, 94, 98] train each scene separately, with its
own set of actor and background triplanes. This prevents
effective handling of ambiguities in occluded or unseen
regions, resulting in actor representations that generalize
poorly to unseen viewpoints. Naively training jointly over
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Figure 2. Learning latent asset representation. We learn a low-dimensional object latent space that generates complete assets by training
across multiple scenes via occlusion-aware neural rendering. The asset decoder is trained to map low-dimension latent codes into neural
assets which are then composed with learnable per-scene background models to match real-world sensor observations.

all the explicit triplanes for every actor in the dataset con-
taining tens of thousands of objects requires vast amounts
of GPU memory and still does not force the learned tri-
planes to have complete actor shape and appearance. To
address these limitations, we propose learning a latent code
c; € RmAaxmaxc for each actor representation and a class
embedding e; € R"AX"™AX¢ combined with a shared as-
set triplane decoder fg.. that maps the latent code into the
triplane representation:

face * €1,€; € RMAXMAXC y f, ¢ RNAXNAOBC (g

The class embedding e; has the same spatial resolution as
the latent code and is shared among actors of the same class.
We concatenate it with the actor latent code before passing
it to the decoder. The decoder fg.. upsamples the latent
code by a factor f = N4/n4. The intuition is that dif-
ferent actors are observed from various viewpoints, so their
feature planes t; capture different informative regions. By
compressing them into a latent code bottleneck, we enable
learning shape and appearance priors, allowing inference of
invisible parts from sparse observations.

Rendering Sensor Observations: Now that we have de-
coded the asset neural fields {t;}}¥, from the latent codes
{c;},, the next step is to composite them with the back-
ground neural fields tg and render into the sensor data. In
this work, we focus on camera images and LiDAR point
clouds, as they are primary sensory modalities for SDVs.

For camera rendering, we use a hybrid volume and neu-
ral rendering framework for both efficiency and realism.
Given a camera ray r(t) = o + hd sent from the camera
center o to the pixel in direction d, we sample 3D points
along the ray, querying geometry s; and neural feature f;
via Eq. (1). We then aggregate these samples to obtain the
pixel feature through volume rendering:

N, t—1
f(r) = Zwtft, w; = oy H(l — o), 3)
t=1 j=1

where «; is the opacity for the ¢-th point, derived from the
SDF s; following [74, 98]. We repeat this process to volume
render all camera pixels, generating a 2D feature map F €
RHs*WsxCr Then we leverage 2D CNN network fraw [98]
to convert this feature map into an image I,p:

Jrev cF ¢ RHr*WixCy — Ligp e RIXWx3 (g

The CNN network fo, upsamples the rendered map from
resolution Hy x Wy to H x W. This allows us to signif-
icantly reduce the number of neural feature field queries.
This approach also enhances model capacity and improves
image quality by capturing spatial relationships effectively.

In addition to camera images, we use LiDAR rendering
for additional geometry supervision. LiDAR sensors emit
laser pulses and measure the time of flight to determine dis-
tances to reflective surfaces. This depth information pro-
vides valuable supervision for asset geometry. Using sim-
ilar notation, we define r(¢) = o + hd as a ray cast from
the LiDAR sensor center o in the direction d. We render
LiDAR depth similarly to Eq. (3) by aggregating sample
depths via volume rendering: D(r) = Zfﬁl wihy, where
h; is the depth of the ¢-th sampled point, and w; is the sam-
ple weight computed as in Eq. (3).

Learning: We jointly optimize the asset code {c;}~°,,
class embedding {ei}f\iﬁl, background neural fields tz, as-
set decoder fqe., neural feature fields MLP f,, and RGB
CNN network frop by minimizing the differences between
rendered and observed sensor data. To achieve high-fidelity
reconstruction and rendering, we incorporate perceptual
and patch-based adversarial objectives. We also regular-
ize the latent space by applying a Kullback—Leibler (KL)
penalty. Our full objective is:

L = Ligh+AperpLperp + Aady Ladv +Mia Lria + Ak LrL, (5)

where Lo, and Ly, represent the ¢, photometric loss and
the perceptual loss [103] between rendered and observed
images, Ly is the adversarial objective using patchGAN
[26], Lyq is the ¢; depth loss between rendered and ob-
served LiDAR points, and Lk is the injected KL penalty
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Figure 3. Left: Training asset diffusion model in latent space. Right: Sampling diffusion model for (un)conditional neural asset generation.

guiding the latent space towards a standard normal distribu-
tion, similar to [30, 58]: Lk, = §||p?+0?—1—log(a?)|,
where p; and o; represent the mean and standard devia-
tion components of latent code c;, i.e., ¢; = ;L? +0;Oe€,
with € ~ N(0,I). This regularization prevents overfitting
and encourages the latent space to be compact, continuous,
smooth, and low-variance, enabling easier learning of gen-
erative models. Similar to [16, 91], we introduce additional
perceptual losses on object patches for enhanced object-
level supervision, where the patches are obtained by pro-
jecting the 3D instance boxes onto the image plane. Please
refer to supp. for more details.

3.3. Latent Asset Diffusion Model

Given our learned asset code library {c;}}¥; from the
dataset, we aim to learn generative priors using a diffusion
model. Diffusion models [22, 66] are probabilistic frame-
works that model the data distribution by progressively de-
noising a Gaussian noise variable. In our approach, the dif-
fusion model operates directly in the latent space and begins
with Gaussian noise, progressively denoising it to recover
the underlying latent distribution. The forward or diffu-
sion process is a discrete-time Markov chain that iteratively
adds Gaussian noise to the latent code ¢(%), producing pro-
gressively noisier codes following the transition probability
q(cW|ct=D) = N (/1 — pOclt=D, M), according to
a noise schedule 3(*). After T steps, the code approximates
pure Gaussian noise. This forward process can be directly
sampled at timestep ¢ using closed-form expression:

¢ =VaWe® +/1-alve, (©)

where @) = [['_, o with o = 1 — g®), and
€ ~ N(0,I) is drawn from a Gaussian distribution. The
goal of the diffusion model is to learn the reverse process,
progressively denoising the noisy code to recover a clean
version. We parameterize the denoising network fgr as a
U-Net [60], which takes the noisy code c¢(*) and timestep ¢
as inputs, predicting the noise estimate fgr(c®,t) and re-
moving it to yield a denoised code. The denoising network
is trained with a weighted ¢ objective:

1
Lt = Ec et iw(t) | faiee(c®, 1) — €||3 ], (7N

where € ~ N (0, 1) is standard Gaussian noise, t ~ U(1,7T)
is uniformly sampled from the interval [1, 7], and c(*) is de-
rived from ¢(?) (Eq. (6)), where c(®) ~ {c;} Y, is sampled
from the asset code library. The term w® provides time-
dependent weighting. Learning the diffusion process in the
latent space, rather than in high-dimensional triplane space
like prior work [2, 9, 45, 65, 85], offers key advantages for
likelihood-based generative modeling by: (i) focusing on
essential contents of the data and (ii) operating in a compu-
tationally efficient, compact space.

Unconditional Asset Generation: Unconditional asset
generation involves generating a latent code using the
learned diffusion model fg;r and then decoding it into neu-
ral assets using the learned asset decoder fj.. Sampling
from the diffusion prior can be performed with various
solvers (e.g., DDPM [22], DDIM [67]), similar to methods
used in image generation. Taking DDIM [67] for example,
we begin with a random Gaussian code c(™) ~ A/(0,T) and
iteratively denoise it over 1" steps until reaching ¢ = 0:

(t=1) — \/q(t=1) c® —/pWe (t—1)g
c a +Vpli=Ve, (8)
Va)

st. €= fan(c®, 1), )

where € is the noise estimate at timestep ¢ from the denois-
ing network fuqg. The final denoised code c(?) is a sam-
ple from the learned latent distribution. We then pass this
code to the asset decoder to generate the asset neural fields,
t= fdec(c(o)), for scene composition and rendering.

Conditional / Guided Assets Generation: For condi-
tional generation, we aim to model the conditional distri-
bution of the latent space p(c|y). This can be achieved with
a conditional denoising network fgis(c®), ¢, 5), with condi-
tion signals such as actor class and time-of-day. As shown
in Fig. 1, classifier-free diffusion guidance enables effec-
tive control over asset generation. Alternatively, for some
inverse problems such as image-to-3D, conditional genera-
tion can be approximated from an unconditional model us-
ing classifier guidance [13, 68], leveraging gradients of the
rendering loss w.r.t. known observations. This flexibility re-



moves the need for separate models tailored to different in-
verse problems. Given camera image and/or LiDAR point
cloud of a new actor to reconstruct, during the sampling pro-
cess (Eq. (8)) we compute the gradient of the rendering loss
with respect to the current code: g = V .(t) (Lrgb + Mia Liid )
and then steer the sampling process by updating the noisy
code similar to [9, 45]:

¢t = _ ). g, (10)

where c*~1) is computed following Eq. (8) and ¢~ is
the updated code; A is a small guidance weight.

4. Experiments

In this section, we first describe our experimental setup.
We then compare our model to state-of-the-art reconstruc-
tion methods across multiple novel view synthesis settings.
Next, we compare to SOTA generative models for 3D gener-
ation. Finally, we demonstrate conditional generation from
different classes, single-image, and appearance (day/night),
and show that the generated assets enhance downstream de-
tection performance. Please refer to the supp. for imple-
mentation details and ablation of our model components.

4.1. Experimental Setup

Dataset: We conduct experiments on the PandaSet [88]
dataset, which includes 103 driving scenes captured in San
Francisco, with each scene spanning 8 seconds (80 frames
at 10hz). The data collection platform features a 360° me-
chanical spinning LiDAR, a forward-facing LiDAR, along
with six 1920 x 1080 cameras surrounding the vehicles. Ob-
ject bounding boxes are provided with the dataset. As our
focus is object reconstruction and generation, we extract ob-
ject segmentation masks for metric evaluation. Specifically,
we leverage 3D object boxes and LiDAR points to identify
actor patches in the camera images, and then apply a vi-
sual foundation model [31] to generate instance masks for
the actors. Our method does not require instance masks for
learning. We employ them strictly to evaluate foreground-
only metrics. Please see supp. for details.

Baselines: We compare our method with several state-
of-the-art reconstruction and generation approaches. For
reconstruction, we benchmark against per-scene NeRF-
based NeuRAD [74] and 3D Gaussian Splatting-based Street
Gaussians [94], as well as generalizable reconstruction
methods G3R [10] and PixelSplat [8]. During evaluation,
these methods take as input all source views for the full
scene, except for PixelSplat, which can only handle two
views. For generation, we evaluate against the GAN-based
EG3D [7] and DiscoScene [91], as well as diffusion-based
SSDNeRF [9]. As EG3D and SSDNeRF are object-centric
models, we train them on our object-centric benchmark
with instance masks.

4.2. Reconstruction Evaluation

Evaluation Settings and Metrics: We evaluate our
method across three challenging settings: (1) Sparse view
synthesis: Using every 10th frame for training and the re-
maining frames for testing, with both training and testing
frames captured from the front camera. (2) Novel camera
synthesis: Training on frames from the front camera and
evaluating on frames from the front-left camera. (3) 360°
View synthesis: Rotating actors (0°-360°) to simulate vari-
ous behaviors, evaluated on front camera views. We select
7 diverse scenes to assess reconstruction performance, with
the remaining 96 scenes for learning generalizable priors.
For sparse view synthesis and novel camera synthesis, we
report PSNR, SSIM [82], and LPIPS [103]. For 360° view
synthesis, since no ground truth images are available, we
report FID metrics [21]. As PixelSplat [8] is designed to
reconstruct with two input views, we only evaluate it on the
sparse view synthesis setting.

Sparse View Synthesis: We first compare our method
against state-of-the-art approaches for sparse view synthe-
sis in Tab. 1. Our method outperforms the baselines across
all metrics. Unlike prior methods that uses 90% frames
[11, 95], 75% frames [94] or 50% frames [10, 74, 98] for
training, our setup is more challenging, relying on only
10% of frames for training. We found that baseline methods
struggle to learn robust geometry, leading to severe artifacts
in novel viewpoints. Qualitative results in Fig. 4 (top) show
that our method renders camera images more accurately.

Novel Camera Synthesis: We compare our method
against SOTA for novel camera synthesis in Tab. 1. A vi-
sual comparison is provided in Fig. 4 (middle). All base-
line methods effectively reconstruct observed camera data
(front camera). However, for new sensor poses (front-left
camera), previously unobserved regions become visible, re-
quiring the model to “hallucinate” these areas. For instance,
the front-right part of the SUV in Fig. 4 (middle) is invisible
in the front camera but becomes visible in front-left camera
views. Reconstruction methods fail on these regions. Our
method, by learning generative priors, is capable of render-
ing complete and high-quality simulations in this setting.

360° View Synthesis: Sensor simulation requires not
only simulating novel viewpoints but also synthesizing en-
tirely new scenarios. Consider a four-way intersection with
a car crossing in front of you from a perpendicular lane.
To explore a situation where that car suddenly turns sharply
into your lane, we must render actors in significantly dif-
ferent poses than those seen in the original scene. To that
end, we investigate a 360° view synthesis setting by rotat-
ing actors in the scene from 0° to 360°, simulating various
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Figure 4. Top: Sparse view synthesis. GenAssets generalizes well on this extreme setting thanks to low-dimensional latent space learned
across many scenes, while the SOTA reconstruction methods are less robust and produce noticeable visual artifacts (e.g., missing, blurry
or distorted appearance). Middle: Novel camera synthesis. We train on frames from the front camera and evaluate on frames from the
front-left camera. Our method generates assets that have better extrapolation results, while retaining high quality in the original view.
Bottom: 360° view synthesis. Through our multi-scene training and latent space, our method enables higher-fidelity asset completion for
different object orientations compared to SOTA reconstruction-based methods.

Methods Sparse View Synthesis Novel Camera Synthesis 360° View Synthesis
PSNRT SSIMt LPIPS| PSNR{T SSIMtT  LPIPS| FIDJ

PixelSplat* [8] 17.67 0.704 0.336 - - - -

G3R [10] 18.37 0.711 0.255 17.40 0.723 0.221 191.92

Street Gaussian [94]  20.01 0.763 0.156 17.81 0.724 0.226 162.37

NeuRAD [74] 21.07 0.825 0.129 17.49 0.723 0.214 159.38

Ours 21.34 0.825 0.113 18.36 0.805 0.147 100.28

Table 1. Quantitative comparison with SoTA reconstruction approaches on PandaSet. We evaluate on sparse view synthesis (10%
frames for training and remaining frames for testing), novel camera synthesis (training on front camera and testing on front-left camera),
and 360° view synthesis (rotating actors from 0° to 360°). GenAssets outperforms existing SOTA per-scene or generalizable reconstruction
approaches across all settings. PixelSplat* [8] (2 input views) only for sparse view synthesis evaluation.

orientations. Since ground-truth images are unavailable, we
report FID [21] in Tab. 1. Qualitative results in Fig. 4 (bot-
tom) show that our method effectively hallucinates unseen
parts of the actors, whereas all baselines struggle to do so.

4.3. Generation Evaluation

Evaluation Metrics: To evaluate the generation quality,
we report both Fréchet Inception Distance (FID) [21] and
Kernel Inception Distance (KID) [3] scores. The metrics
are calculated by comparing distributions of 10K generated
images with all available images in the validation set, pro-
viding a quantitative assessment of similarity in terms of
perceptual quality and realism. FID measures the distance
between the mean and covariance of feature representations
from real and generated image distributions. KID comple-
ments FID by measuring differences in feature embeddings

through a kernel-based approach. All generated objects are
rendered at a resolution of 256 x 256.

Unconditional Generation: We compare our method
against SOTA GAN-based method EG3D [7] and Dis-
coScene [91], as well as diffusion-based method SSDNeRF
[9] in Tab. 2. All baselines struggle with occlusion, leading
to suboptimal assets. In addition, EG3D and DiscoScene
suffers from mode collapse, producing limited asset vari-
ety (mainly sedans). DiscoScene struggles to differentiate
foreground and background and exhibits boundary artifacts,
likely due to the absence of LiDAR or mask supervision.
SSDNeRF yields blurry results, potentially due to chal-
lenges posed by our real-world sparse setting. Our model
improves over these baselines across all metrics. Fig. 5
shows a visual comparison.
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4.4. Applications

Conditional Generation: The flexibility of our frame-
work enables various conditional generation tasks. Specif-
ically, we freeze the learned latent codes and train a con-
ditional diffusion model fdiff(c(t), t,y) using classifier-free
guidance. We explore conditioning on fine-grained actor
classes and time-of-day (day/night), with results presented
in Fig. 1. We can generate complete assets for a variety
classes, with intra-class shape and appearance variation.

Single Image to 3D: Our approach also enables generat-
ing 3D assets from single-view images using a rendering-
guided denoising process (Eq. (10)), where the denois-
ing gradient is directed to minimize rendering loss against
the observed image. Fig. 6 shows qualitative results
of single-image reconstruction for three nearby vehicles,
alongside comparisons to SoTA large reconstruction model
MeshLRM [83]. MeshLRM produces distorted shapes
and synthetic cartoon-ish appearance for unobserved views.
Our approach generates higher quality completion and is
consistent with the input. Please refer to supp. for more
comparisons with other SoTA large models.

Data Augmentation with GenAssets: We now show-
case that our generated assets boost downstream perfor-
mance when training a BEVFormer [33] 3D object detec-
tor (Tab. 3). Specifically, we augment the training dataset
by swapping out existing actors with generated ones for the
same scene layouts. Please see supp. for more details.

Methods FID| KIDJ]
SSDNEeRF [9] 191.30 156.13
DiscoScene [91] 138.48 116.27
EG3D [7] 80.56 38.97
Ours 59.50 28.32

Table 2. Unconditional generation evaluation on PandaSet.
KID scores are multiplied by 10. GenAssets outperforms SoTA
baselines on both metrics and generates higher-quality 3D assets.

mAPt AP@Im{ AP@2m{ AP@4mt

Real 27.08 8.58 26.99 45.67
Real + Sim  29.32 9.78 29.18 49.00

Table 3. Data augmentation with GenAssets helps 3D detec-
tion. We report distance-based APs [4] at 1m, 2m and 4m.

5. Conclusion

In this work, we tackled the challenge of generating
high-quality and complete assets from in-the-wild Li-
DAR and camera data captured by a moving sensor plat-
form. Towards this goal, we developed a ‘“reconstruct-
then-generate” approach where we first learn to reconstruct
foreground actors over multiple scenes with compositional
scene neural rendering and encode them to a latent space.
We then train a diffusion model to operate within this latent
space to enable generation. We show our method generates
high-quality, complete assets for actors such as vehicles and
motorcycles, outperforming both per-scene reconstruction
methods and generative models. We also show that our ap-
proach can be conditioned for controllable asset generation
such as on sparse sensor data, actor class, and time of day,
enabling diverse and scalable content creation for simula-
tion. Future work involves generating dynamic lighting and
animation, intrinsic decomposition, and adopting more effi-
cient scene representation and rendering techniques.
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