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In the supplementary material, we provide implementation details of our method (Appendix A) and baselines (Ap-
pendix B), experimental settings (Appendix C), additional results and analysis (Appendix D), and then discuss limitations
and future directions of our method (Appendix E). Please refer to our project page https://waabi.ai/genassets
for an overview of our methodology and video results of GenAssets for scalable content creation and sensor simulation.

A. GenAssets Details
Scene Representation Model: Our scene representation model is based on tri-plane feature maps and neural feature fields
MLP network ffeat. For each actor, we use a tri-plane with spatial resolution of 128× 128 and feature dimension of 12. For
the background, we use a triplane with spatial resolution 256 × 256 and feature dimension of 12. The neural feature fields
MLP network is composed of two sub-networks. The first one takes the interpolated feature {interp(xp, tp)}p∈{xy,xz,yz}
as input and predicts the signed distance value s and an intermediate feature. The second network takes the concatenation of
the intermediate feature and viewpoint encoding as input to predict the neural feature vector f with 32 channels. To model
the unbounded scene, we adopted an inverted sphere parameterization similar to [1, 29]. To decouple shadows from actors,
we identify the camera ray’s intersection with the actor’s bottom plane (derived from the actor’s pose and dimension) and use
a shadow head MLP to predict the actor’s shadow RGB.

Rendering Details: To render the neural feature fields, we sample query points with a step size of 5 cm for regions inside
the foreground actor bounding boxes, and 30 cm otherwise. To enable efficient volume rendering for unbounded background
regions, we leverage geometry priors from LiDAR observations to localize near-surface regions, restricting radiance field
evaluations to these areas. This approach significantly reduces the number of samples and radiance queries needed. Specifi-
cally, we construct an occupancy grid for the scene volume based on aggregated LiDAR point clouds similar to [29], with a
voxel size of 0.5 m. Additionally, 8 extra points are sampled for the distant sky region during volume rendering.

Asset Decoder: Our asset decoder fdec is designed to transform the asset latent representation into the tri-plane represen-
tation. The latent code has a spatial resolution of 8 × 8 and a feature dimension of 32. We regularize the latent space with
a small Kullback-Leibler (KL) penalty using the reparameterization trick [14]. The asset decoder adopts a similar architec-
ture to [10], where the latent code is concatenated with the class embedding and processed through a sequence of blocks: a
residual block with 256 channels, a non-local block with 256 channels, and another residual block with 256 channels. This
is followed by five residual blocks with channel channels 256, 128, 128, 64, 64, with four 2×upsampling layers interleaved
from the second to the last residual block, progressively increasing the spatial resolution to 128×128. Finally, a convolutional
layer predicts the tri-plane representation. Group normalization with 32 groups is applied to normalize intermediate features.

Camera RGB CNN Network: The camera RGB network frgb consists of 6 residual blocks with 32 channels, and upsample
the rendered image feature map from 480× 270 to 1920× 1080 resolution. A convolution layer is applied at the beginning
to convert input feature to 32 channels, and another convolution layer is applied to predict the final output image. To get a
larger receptive field, we set kernel size to 5 for all residual blocks. Two 2× upsampling layers are inserted after the second
residual block and the fourth residual block.
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Denoising Network: The denoising network fdiff is implemented as a U-Net [20], following the design in DDPM [12].
The U-Net uses a base channel of 128 and includes two 2× scaling module, each consisting of two residual blocks. The
feature dimension increases progressively from the base channel size of 128 to 512. Timestep embeddings t and conditioning
signals (e.g., class labels, time-of-day) are incorporated into the intermediate layers. For the prediction format, we use the
v-parameterization, as proposed in [21].

Training Details: In the first stage, we jointly train the asset code {ci}Nc
i=1, class embedding {ei}Ne

i=1, background neural
fields tB, asset decoder fdec, neural feature fields MLP ffeat, and RGB CNN network frgb to minimize the reconstruction
objective (Eqn. 5 in the main paper). The training set consists of 6 cameras from PandaSet across 96 training logs, each
containing 80 images at 1920 × 1080 resolution, totaling approximately 46k images. Training is performed on 16 NVIDIA
A10G GPUs, for 100 epochs, taking approximately 1.5 days to complete. The loss weights in the learning objective are set
as follows: λrgb = 1, λperp = 0.1, λadv = 0.001, λlid = 0.01, and λKL = 1e − 5. For the additional perceptual loss on
object patches, we project the 3D instance boxes onto images to extract patches, which are resized to 256 × 256 resolution
for perceptual loss computation. We adopt Adam optimizer [15] for training. Learning rate is 0.05 for asset latent code,
0.0001 for asset decoder and class embedding, 0.001 for neural feature fields network, and 0.001 for RGB CNN network.
In the second stage, the denoising network is trained exclusively on 8 NVIDIA A10G GPUs for 100k iterations, requiring
approximately 12 hours. The Adam optimizer is used with a learning rate of 0.0001 for the denoising network.

B. Baseline Implementation Details
B.1. Reconstruction Baselines

NeuRAD [22]: Following [29], NeuRAD leverages compositional neural radiance fields to handle dynamic scenes. It
further proposes several techniques to handle more complex sensor phenonmena (e.g., rolling-shutter, ray-dropping and
beam divergence) and achieves superior performance in camera simulation. We adopt the public implementation1 and train
the models for 20,000 iterations. The models are trained on all input views (9 images for sparse view synthesis, and 80
images for novel camera synthesis and 360◦ view synthesis) for each validation snippet.

Street Gaussian [28]: Street Gaussian replaces NeRFs in [22, 29] with compositional 3DGS and achieves real-time camera
simulation, but does not support LiDAR. We adopt the public implementation2 and train the models for 30,000 iterations with
the default hyperparameters (e.g., density control, learning rate schedule). We use 800,000 downsampled aggregated LiDAR
points and random 200,000 points for the initialization of 3D Gaussians. We train the models on all input views (9 images
for sparse view synthesis, and 80 images for novel camera synthesis and 360◦ view synthesis) for each validation snippet.

PixelSplat [6]: PixelSplat is a generalizable scene reconstruction approach based on 3D Gaussian Splatting. It predicts 3D
Gaussians with a 2-view epipolar transformer to extract features and then predicts the depth distribution and pixel-aligned
Gaussians. The model is trained with 96 training PandaSet snippets with 9 source views and 71 target views. During sparse
view synthesis evaluation, we select the two nearest source views to predict and render the representation. We adopt the
public implementation3 and use 2× A6000 (48GB) to train the models. Due to GPU memory constraints, we downscale the
image resolution to 360 × 640 for PandaSet (and rescale images to 1920 × 1080 for evaluation). We note that the original
work uses an 80GB A100 for training and handles 256 × 256 resolution. We use re10k config and train each model for
100k iterations with a batch size of 1.

G3R [8]: G3R is a generalizable reconstruction approach that is designed for real-world large scenes and can efficiently
predict high-quality 3D Gaussians taking many training images. It learns a reconstruction network that takes the gradient
feedback signals from differentiable rendering to iteratively update a 3D scene representation. We adapt G3R to our evalu-
ation setting by training models on sparse training views (sparse view synthesis) or all front-camera images (novel camera
synthesis and 360◦ view synthesis). For all experiments, during training we follow [8] to randomly select 20 consecutive
frames (10 source views, 10 target views) using the front camera. We train the models on 2× A6000 (48GB) for 300 epochs.
During the evaluation, we take all source images to reconstruct the 3D representations (9 images for sparse view synthesis, 80
images for novel camera synthesis and 360◦ view synthesis) for each validation snippet, and then render at the target views.

1https://github.com/georghess/neurad-studio
2https://github.com/ziyc/drivestudio
3https://github.com/dcharatan/pixelsplat
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B.2. Generation Baselines

EG3D [5]: EG3D is a GAN-based model for high-quality 3D object synthesis with implicit representations. It combines
StyleGAN-like latent space manipulation with a geometry-aware approach, leveraging a tri-plane representation to balance
rendering quality and computational efficiency. The architecture integrates volumetric rendering and an efficient super res-
olution module, enabling fast and scalable training while maintaining photorealistic results and precise 3D structures. We
adopt the official implementation4 and train the models on our object-centric benchmark (≈ 55k object images) using 2×
A5000 (24GB) GPUs. We render the feature map at a resolution of 64× 64 and use 4× super resolution module to produce
final images at 256× 256 resolution. Each ray samples 64 coarse samples and 64 importance samples. The model is trained
with a batch size of 8 images over a total of 1000k images. We apply R1 regularization with γ = 1 to ensure stable training.

DiscoScene [27]: DiscoScene is a 3D-aware GAN-based generative model for controllable scene synthesis. It utilizes an
abstract object-level representation as the scene layout prior and spatially disentangles the scene into object-centric generative
radiance fields by learning solely from 2D images with the global-local discriminators. We use the official implementation5

and follow the provided configuration6 for Waymo. We train the model on all cameras from PandaSet, with a heuristic-based
filtering process to remove noisy object samples. Specifically, we exclude objects smaller than 200 pixels in the original
1920× 1080 resolution or those occluded by closer objects (i.e., having > 50% IoU with a nearer object when projecting the
3D instance box onto the camera image). We train the model using 2× A5000 (24GB) GPUs for 300k iterations.

SSDNeRF [7]: SSDNeRF (Single-Stage Diffusion Neural Radiance Field) is a SoTA diffusion-based model for high-
quality 3D object generation. It proposes a single-stage training paradigm with an end-to-end objective that jointly optimizes
the tri-plane NeRF reconstruction and a diffusion model in the triplane space. This design enables simultaneous 3D re-
construction and generative prior learning. SSDNeRF achieves competitive results in both unconditional generation and
sparse-view 3D reconstruction tasks. We adopt the official implementation7 and use 2× A5000 (24GB) GPUs to train the
models on our object-centric benchmark. We follow the config for unconditional generation detailed in the official repo8. We
train the model with rendered images at a resolution of 256 × 256 and tri-plane resolution of 128 × 128. Since instances in
our PandaSet object-centric benchmark contain varying numbers of images, we randomly sample three views per instance in
each iteration. The model is trained with a batch size of 16 instances over 400k iterations.

C. Experiment Details
C.1. Pandaset Dataset

We evaluate on public real-world dataset PandaSet [25] which contains 103 urban driving scenes captured in San Francisco.
Each scene spans 8 seconds (80 frames sampled at 10Hz). The data collection platform consists of a 360◦ mechanical
spinning LiDAR as well as a forward-facing LiDAR, along with 6 HD (1920 × 1080) cameras. These cameras are facing
front, front-left, left, back, front-right, and right. PandaSet also provides human annotated 3D bounding boxes in each
frame. Following [8], we select 7 diverse scenes (001, 030, 040, 080, 090, 110, 120) for evaluation, and the
remaining 96 scenes for training. As our focus is object reconstruction and generation, we leverage Segment Anything model
(SAM) [16] to extract object segmentation masks for metric evaluation. We also use them to train object-centric baselines
EG3D [5] and SSDNeRF [7]. Specifically, we project 3D bounding boxes onto the camera image to obtain 2D boxes. The 2D
bounding boxes are used as prompts for the SAM, which generates per-pixel object masks. Next, we project the 3D LiDAR
points within the 3D bounding box onto the camera image and calculate the ratio of points falling outside the object mask. To
handle failures in SAM that are inconsistent with the 3D annotation, instances with more than 30% of LiDAR points falling
outside the masks are removed. We also filter out instances that are too small (< 100 pixels) in the camera images. To further
improve the data quality for training object-centric baselines, we exclude instances that are heavily occluded by other objects.
Specifically, we project actor bounding boxes onto the camera image and determine the occluded areas caused by closer actor
bounding boxes. Instances with more than 50% of their bounding box area occluded are removed. After processing, we have

4https://github.com/NVlabs/eg3d
5https://github.com/NVlabs/eg3d
6https://github.com/snap-research/discoscene/blob/master/scripts/discoscene/training/train_waymo256.

sh
7https://github.com/Lakonik/SSDNeRF
8https://github.com/Lakonik/SSDNeRF/blob/main/configs/paper_cfgs/ssdnerf_cars_uncond.py
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Figure A1. Examples of object-centric benchmark. We leverage Segment Anything [16] model and object 3D bounding boxes to create
an object-centric benchmark for evaluating object reconstruction and generation, and training object-centric baselines [5, 7].

GenAssets Actor Class PandaSet Actor Class

Car Car

Truck
Pickup Truck
Medium-sized Truck
Semi-truck

Bus Bus

Construction Vehicle Other Vehicle - Construction Vehicle

Emergency Vehicle Emergency Vehicle

Bicycle Bicycle

Motorcycle Motorcycle
Motorized Scooter

Pedestrian Pedestrian
Pedestrian with Object

Table A1. Mappings between PandaSet actor class and our defined actor class for class conditional generation.

around 55k object images (with corresponding instance masks) to train the object-centric baselines and around 5k images for
evaluation. Fig. A1 shows examples of object-centric images created from PandaSet.

C.2. Evaluation Metric Details

Asset Reconstruction Metrics: For Sparse view synthesis and Novel camera synthesis settings, we report peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) [23], and perceptual similarity (LPIPS) [31] metrics to evaluate the photore-
alism of novel views. We mask out the background using our inferred object segmentation masks. Our approach, along with
generalizable reconstruction baselines PixelSplat [6] and G3R [7], are trained on the 96 training logs to learn generalizable
priors. For Sparse view synthesis, we evaluate using the front camera from 7 evaluation logs. All methods take every 10th
frame as source frames and evaluate on the remaining frames. For Novel camera synthesis, we use all frames from the front
camera as source frames and evaluate on all frames from the front-left camera across the 7 evaluation logs. For 360◦ View
synthesis, we rotate actors by 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦ to simulate various behaviors to evaluate the asset
completeness. All frames from the front camera are used as source frames, and evaluations are conducted on the 7 evalua-
tion logs. Since ground-truth images for rotated actors are unavailable, we measure Fréchet Inception Distance (FID) [11]
between the rotated images and source images.

Asset Generation Metrics: To evaluate the asset generation quality, we report both the Fréchet Inception Distance (FID)
[11] and Kernel Inception Distance (KID) [3] metrics. The FID metric is defined as:

FID = ∥µr − µg∥2 +Tr
(
Σr +Σg − 2(ΣrΣg)

1
2

)
(1)

where µr and µg are the means of the feature representations for the real and generated images, respectively. And Σr and Σg

are the corresponding covariance matrices. Tr denotes the trace of a matrix. The KID metric measures the squared Maximum
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NeuRADG3R Street Gaussian OursGT

Figure A2. Qualitative results on sparse view synthesis. All methods use every 10th frame as source frames and evaluate on the remaining
frames. GenAssets generalizes well under this challenging setting, whereas SoTA reconstruction methods show reduced robustness and
introduce noticeable visual artifacts.

NeuRADG3R Street Gaussian OursGT

FrontFront-left

FrontFront-left

FrontFront-left

Figure A3. Qualitative results on novel camera synthesis. We train on front-camera frames and evaluate on front-left-camera frames.
GenAssets achieves better extrapolation, while baseline methods exhibit significant visual artifacts.

Mean Discrepancy (MMD) between two distributions using a polynomial kernel. For both FID and KID, we generate 10k
object images and compute the metrics w.r.t. all object images in the evaluation set. We render the images at a resolution of
256× 256, and resize the real images to the same resolution.

C.3. GenAssets Experiments Details

Asset Reconstruction Details: We train GenAssets on 96 training logs and fine-tune on the 7 evaluation logs for evaluating
asset reconstruction metrics. During fine-tuning, we optimize the asset latent code and background tri-planes to minimize
the reconstruction objective (Eqn. 5 in the main paper). In addition, we incorporate a diffusion prior term (Eqn. 7 in the
main paper), resulting in the final training objective: L = Lrend +λdiffLdiff. By guiding the gradient to minimize the diffusion
loss, we achieve a more complete reconstruction of the actor latent code. This approach, known as score distillation sampling
(SDS) [18], is widely used in radiance fields generation.

Asset Generation Details: We train GenAssets on 96 training logs, which include diverse assets classes and different times
of day. For class-conditional generation, we map the PandaSet classes into 8 fine-grained GenAssets classes according to
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Front camera Front-right cameraFront-left camera

120°

240°

Front camera Front-right cameraFront-left camera

120°

240°

120°

240°

120°

240°

Figure A4. Qualitative results on 360◦ view synthesis. Leveraging multi-scene training and a structured latent space, GenAssets enables
higher-fidelity asset completion across 360◦ orientations.

Tab. A1. We use an Embedding layer to encode the one-hot representation of class information, which is then combined
with the timestep embedding before being fed into the U-Net denoising network. For time-of-day conditional generation, ac-
tors from night logs (057, 058, 059, 062, 063, 064, 065, 066, 067, 068, 069, 070, 071, 072,
073, 074, 077, 078, 079, 149) are classified as night actors, while the others are categorized as day actors. The
time-of-day information is then used to condition the diffusion model in the same way as the class-conditional model. For
single-image-to-3D generation, we employ a rendering-guided denoising process (Eqn. 10 in main paper). We jointly gen-
erate multiple actors within the same image and applying the rendering loss to the composited actor representations, which
helps to mitigate the shape ambiguity caused by occlusions.

Data Augmentation Details: We show that our generated assets boost downstream performance when training the BEV-
Former detector. Specifically, we augment the training dataset by swapping out existing actors with generated ones for the
same scene layouts. Fig. A5 shows examples of the augmented dataset. We adapt the official BEVFormer repository9 to
support PandaSet, focusing on single-frame vehicle detection using only the front camera. Any actor outside the camera’s
field of view is ignored. Our models are trained in vehicle coordinates following the FLU convention (x: forward, y: left, z:
up), with the region of interest defined as . x ∈ [0, 80m],y ∈ [−40m, 40m], and z ∈ [−2m, 6m]. We use the BEVFormer-
tiny architecture with a batch size of 4 per GPU. We use the AdamW optimizer and employ the default cosine learning rate
schedule for 25 epochs. For augmented training, we generate a simulated (sim) dataset by replacing existing actors with
generated ones while keeping the same scene layouts, and then mix this with the original data (real). We only consider the

9https://github.com/fundamentalvision/BEVFormer
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Figure A5. Examples of sensor simulation generated by GenAssets. For each scene layout (row), existing actors are replaced with
generated ones, showcasing different variations per layout.

vehicle class and report distance-based AP [4] at 1m, 2m, and 4m, and average the three metrics to obtain the final mAP.

D. Additional Experiments and Analysis
D.1. Additional Qualitative Results on Reconstruction

Sparse View Synthesis: Additional qualitative comparisons of sparse view synthesis are presented in Fig. A2. GenAssets
demonstrates strong generalization in this challenging setting, while SoTA reconstruction methods exhibit reduced robustness
and introduce noticeable visual artifacts.

Novel Camera Synthesis: We compare GenAssets against SoTA methods for novel camera synthesis in Fig. A3. The
inset shows source images from the front camera. Rendering from a new camera (front-left) involves significant viewpoint
changes, with previously unobserved regions becoming visible. GenAssets handles these challenges effectively, whereas
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Figure A6. Additional qualitative results on unconditional generation.

Pedestrian Bicycle Motorcycle

Car Truck

Night

Construction vehicle Bus

Figure A7. Additional qualitative results on conditional generation.

baselines struggle with robustness and produce visible artifacts.

360◦ View synthesis: Additional 360◦ view synthesis results are shown in Fig. A4. GenAssets captures complete asset
shapes and appearances, enabling high-fidelity rendering across 360◦ viewpoints, allowing for scalable sensor simulation.

D.2. Additional Qualitative Results on Generation

Unconditional Generation: We provides additional unconditional generation results in Fig. A6. GenAssets generates
diverse, complete and higher-quality 3D assets and enables scalable content creation for sensor simulation.
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Ours

MeshFormer

Ours

MeshFormer

Ours

MeshFormer

InstantMesh InstantMeshInstantMesh

CRM CRMCRM

Figure A8. Additional qualitative results on single image to 3D.

Methods Sparse View Synthesis Novel Camera Synthesis 360◦ View Synthesis

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
Full model 21.34 0.825 0.113 18.36 0.805 0.147 100.28
w/o KL regularizer 21.48 0.825 0.112 18.06 0.800 0.150 110.87
w/o perceptual supervision 21.52 0.829 0.155 18.15 0.803 0.177 110.19
Tri-plane opt. w/o asset decoder 19.31 0.784 0.186 17.58 0.778 0.195 169.44

Table A2. Ablation study on asset reconstruction.

Methods FID↓ KID↓
Full model 59.50 28.32
w/o KL regularizer 82.67 39.06

Table A3. Ablation study on unconditional generation.

Conditional Generation: Fig. A6 provides additional asset generation results conditioned on class and time-of-day. GenAs-
sets allows us to control the generation process for diverse asset creation.

Single Image to 3D: We provides additional single image to 3D comparisons in Fig. A8. Compared to SoTA 3D large
models MeshFormer [17], CRM [24] and InstantMesh [26], our approach generates higher quality 360◦ completion and is
more multi-view consistent. Due to the reliance on object-centric synthetic dataset training, existing 3D large models usually
produce cartoonish generation results especially on unobserved views.

D.3. Ablation Study

In this section, we study the effectiveness of several key components of GenAssets on PandaSet. Tab. A2 reports the re-
construction metrics. The KL term plays a important role in regularizing the latent space and learning complete asset rep-
resentation, which can impacts the novel camera synthesis and 360◦ view synthesis results where the viewpoint changes
are significant. The perceptual supervision enhances the overall image quality (LPIPS and FID) by preserving more details.
We also investigate a setting where per-actor triplane representation are learned directly instead of using latent codes with
a shared asset decoder in latent space. We use the same resolution of 128 × 128 for the per-actor triplane representation
and learn them on the 7 evaluation logs in our experiment. This approach struggles to capture complete assets, resulting in
notably worse performance particularly for 360◦ view synthesis. Finally, we study the impact of KL regularizer in diffusion
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learning in Tab. A3. The KL regularizer is essential for learning complete asset representations for diffusion learning in our
in-the-wild setting.

E. Discussions
E.1. Artifacts and potential enhancements

Our reconstructed or generated assets are not perfect. Our method can still lack sharp details for unobserved views and have
inconsistent color tone. Increasing model capacity and dataset size may ameliorate these artifacts. The triplane representation
can have boundary-like smearing artifacts. Our work may benefit from enhanced 3D representations and rendering techniques
[2, 13]. We also do not model various sensor effects (e.g., sensor calibration [30]) or label noise [29] in the real-world data,
which might result in degraded performance.

E.2. Limitations and Future Work

GenAssets assumes all objects are rigid. Despite this, we still find that the method reconstructs reasonable shape and appear-
ance for pedestrians, as depicted in Fig. A7 and Fig. 1 of the main paper. Additionally, GenAssets are not fully lighting-
aware. Future works include 4D modelling and animation [9], and intrinsic decomposition [19], as well as more powerful
conditioning techniques to further control content creation.

References
[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded anti-aliased

neural radiance fields. CVPR, 2022. 1
[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-based neural

radiance fields. In ICCV, 2023. 10
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