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Abstract: A major bottleneck to scaling-up training of self-driving perception
systems are the human annotations required for supervision. A promising alter-
native is to leverage “auto-labelling” offboard perception models that are trained
to automatically generate annotations from raw LiDAR point clouds at a fraction
of the cost. Auto-labels are most commonly generated via a two-stage approach
– first objects are detected and tracked over time, and then each object trajec-
tory is passed to a learned refinement model to improve accuracy. Since existing
refinement models are overly complex and lack advanced temporal reasoning ca-
pabilities, in this work we propose LabelFormer, a simple, efficient, and effective
trajectory-level refinement approach. Our approach first encodes each frame’s
observations separately, then exploits self-attention to reason about the trajectory
with full temporal context, and finally decodes the refined object size and per-
frame poses. Evaluation on both urban and highway datasets demonstrates that
LabelFormer outperforms existing works by a large margin. Finally, we show that
training on a dataset augmented with auto-labels generated by our method leads
to improved downstream detection performance compared to existing methods.
Please visit the project website for details https://waabi.ai/labelformer/.
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1 Introduction

Modern self-driving systems often rely on large-scale manually annotated datasets to train object
detectors to perceive the traffic participants in the scene. Recently, there has been a growing interest
in auto-labelling approaches that can automatically generate labels from sensor data. If the comput-
ing cost of auto-labelling is lower than the cost of human annotation and the produced labels are of
similar quality, then auto-labelling can be used to generate much larger datasets at a fraction of the
cost. These auto-labelled datasets can in turn be used to train more accurate perception models.
Following [1, 2], we use LiDAR as input as it is the primary sensor deployed on many self-driving
platforms [3, 4]. In addition, we focus on the supervised setting where a set of ground-truth labels are
available to train the auto-labeller. This problem setting is also referred to as offboard perception [2],
which, unlike onboard perception, has access to future observations and does not have real-time
constraints. Inspired by the human annotation workflow, the most common paradigm [1, 2] tackles
the offboard perception problem in two stages, as shown in Fig. 1. First, objects and their coarse
bounding box trajectories are obtained using a “detect-then-track” framework, and then each object
track is refined independently. The main goal of the first stage is to track as many objects in the
scene as possible (i.e. to achieve high recall), while the second stage focuses on track refinement to
produce bounding boxes of higher quality. In this paper, we focus on the second stage, which we
refer to as trajectory refinement. This task is challenging as it requires handling object occlusions,
the sparsity of observations as range increases, and the diverse size and motion profiles of objects.
In order to handle these challenges, it is key to design a model that is able to effectively and effi-
ciently exploit the temporal context of the entire object trajectory. However, existing methods [1, 2]
∗Work done at Waabi.
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Figure 1: Two-stage auto-labelling paradigm. The first stage uses a detect-then-track paradigm
to obtain coarse object trajectories. The second stage refines each trajectory independently.

fall short as they are designed to process trajectories from dynamic objects in a sub-optimal sliding
window fashion, where a neural network is applied independently at each time step over a limited
temporal context to extract features. This is inefficient as features from the same frame are extracted
multiple times for different overlapping windows. As a consequence, the architectures exploit very
small temporal context to remain within the computational budget. Furthermore, prior works uti-
lized complicated pipelines with multiple separate networks (e.g., to handle static and dynamic
objects differently), which are hard to implement, debug, and maintain.

In this paper, we take a different approach and propose LabelFormer, a simple, efficient, and ef-
fective trajectory refinement method. It leverages the full temporal context and results in more
accurate bounding boxes. Moreover, our approach is more computationally efficient than the ex-
isting window-based methods, giving auto-labelling a clear advantage over human annotation. To
achieve this goal, we design a transformer-based architecture [5], where we first encode the initial
bounding box parameters and the LiDAR observations at each time step independently, and then
utilize self-attention blocks to exploit dependencies across time. Since our method refines the entire
trajectory in a single-shot fashion, it only needs to be applied once for each object track during in-
ference without redundant computation. Additionally, our architecture naturally handles both static
and dynamic objects, and it is much simpler than other approaches.

Our thorough experimental evaluation on both urban and highway datasets show that our approach
not only achieves better performance than window-based methods but also is much faster. Moreover,
we show that LabelFormer can be used to auto-label a larger dataset for training downstream object
detectors, which results in more accurate detections comparing to training on human data alone or
leveraging other auto-labellers.

2 Related Works

LiDAR-based Auto-Labelling: These approaches have emerged from the need to automate the
expensive human labelling process. Multiple approaches [6, 7, 8, 9, 10, 11, 12, 13] have attempted
to generate auto-labels with little or no supervision, but they do not achieve satisfactory performance
at high precision. More related to our method, pioneering works Auto4D [1] and 3DAL [2] devel-
oped a two-stage paradigm which first uses an object detector followed by a multi-object tracker to
generate coarse object trajectories, and then refines each object trajectory separately using a super-
vised model. For the second-stage trajectory refinement, which is the problem we focus on in this
work, Auto4D [1] consists of two separate models. It first trains a size branch that refines only the
size with full temporal context, and then freezes the refined size and trains a motion path network
to refine each frame’s pose with a small local window. 3DAL [2] first trains a motion classifier, and
then employs two separate networks for stationary and dynamic objects. The stationary network
uses observations from the full trajectory, while the dynamic network again operates in a windowed
fashion that consumes point cloud observations from a very small local window. As a result, both
works have limited temporal context, incur heavier computational costs from overlapping windows,
and involve complicated workflows with at least two models that cannot be trained jointly. In con-
trast, our work designs a single network to jointly optimize the entire bounding box trajectory at
once. Finally, concurrent works [14, 15] also ingest the full object trajectory for refinement, but [14]
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aggregates all point observations in the global frame and does not conduct explicit cross-frame tem-
poral reasoning, and [15] trains three separate models while we only need one.

Sequence processing with Transformers: The transformer architecture [5] is the state-of-the-art
model for sequence processing. It incorporates a self-attention mechanism that models communica-
tion between the sequence elements and enables sequence-level reasoning. Transformers have been
successfully applied in various domains, including language modeling [5, 16, 17], image and video
processing [18, 19], object tracking [20], and 3D understanding [21, 22]. They are also effective for
multi-modal problems like vision-language joint modeling [23] and autonomous driving [24]. The
application of transformers is particularly advantageous for modeling sequences with long-range
dependencies, which is precisely the case for our trajectory-level refinement task. To handle long
sequences, it is common to preprocess the input tokens with a powerful short-range encoder and
then utilize a transformer to perform global reasoning on the encoder’s outputs [25, 26, 27]. For
instance, the work of [25] addresses long video modeling by processing short video snippets with
object detection, tracking, and action recognition models before passing their outputs to a trans-
former for holistic video analysis. Drawing inspiration from these works, our LabelFormer takes the
per-frame bounding box initializations obtained with a detector and a tracker, and refines them by
jointly considering the bounding box trajectories and point clouds of the entire trajectory sequence.

3 LabelFormer: Transformer-based Trajectory-level Refinement

The goal of trajectory refinement is to produce an accurate bounding box trajectory given a noisy
initialization that is typically obtained using a detect-then-track paradigm. In this paper we propose
a novel transformer-based architecture that takes the raw sensor observations and the full object
trajectory as input, and conducts temporal reasoning simultaneously for all frames in the trajectory.
This architecture naturally handles both static and dynamic objects and jointly refines the bounding
box size and the motion path, resulting in a much simpler, efficient and effective approach.

3.1 Problem Setting

The input to a LiDAR-based auto-labeller is a sequence of T “frames” of point clouds, ob-
tained from a single LiDAR scan (i.e., a 360◦ sweep). Since Bird’s-Eye View (BEV) is the de-
facto representation for downstream tasks in self-driving, such as motion and occupancy forecast-
ing [28, 29, 30, 31, 32] and motion planning [33, 34, 35, 36], LabelFormer operates in BEV.
In the first stage of the auto-labelling pipeline, we use a detection model followed by a multi-
object tracker, which provide us with N perceived objects with initial bounding box trajecto-
ries (B1, . . . ,BN ). Each object trajectory B (we omit the object index for brevity) is defined
by a sequence of M bounding boxes B = (b1, . . . ,bM ), where each BEV bounding box
bi = (xi, yi, li, wi, θi) is parameterized by center position (xi, yi), bounding box length and width
(li, wi), and heading angle θi. All bounding box poses (xi, yi, θi) are in a trajectory coordinate
frame that is centered at the middle of the trajectory, i.e., (xm, ym, θm) = (0, 0, 0) with m = M//2
as the middle index. Note that the sequence lengthM may vary across objects, and that the bounding
box dimensions (li, wi) for the same object might be different across frames because object detec-
tors output bounding boxes for each frame separately. In addition, each bounding box bi is detected
from a scene-level point cloud Pi ∈ Rni×4 that consists of ni points, and each point is represented
as its 3D position in the same trajectory frame along with its timestamp.
Given each object’s coarse bounding box trajectory B = (b1, . . . ,bM ) and the scene-level point
clouds (P1, . . . ,PM ), the goal of trajectory refinement is then to output a precise trajectory B̂ =

(b̂1, . . . , b̂M ) with a bounding box size (l̂, ŵ) that is shared across the entire trajectory.

3.2 Model Architecture

To refine the entire actor trajectory with full temporal context, LabelFormer first uses a shared
encoder to process each frame’s observations separately, and then leverages self-attention to reason
across frames. Finally, a decoder is employed to obtain the refined pose at each frame as well as a
consistent bounding box size for the full duration of the trajectory. Fig. 2 illustrates the architecture.
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Figure 2: LabelFormer Architecture which first encodes box and point observations for each
frame separately, then applies a stack of self-attention layers among per-frame features, and finally
decode a size residual along with per-frame pose residuals.

3.2.1 Per-Frame Encoder

Given the initial object BEV bounding box trajectory B = (b1, . . . ,bM ) and point clouds
(P1, . . . ,PM ) in the trajectory frame described in the problem setting, we first extract object points
inside each bounding box bi by filtering the respective scene-level point cloud Pi in BEV. That is,
we only keep the points in Pi whose BEV projection lies inside the 2D BEV bounding box bi. Since
the bounding box initialization bi is noisy, similar to previous works [1, 2], we enlarge the filtering
region by 10% such that the point cloud contains the full object with high probability. As a result,
each frame i has two input observations: the initial BEV bounding box bi ∈ R5 and the set of mi

3D object points Oi ∈ Rmi×4. We next encode each frame’s bounding box and point observations
separately before fusing them. For brevity, we refer to “bounding box” as “box” from now on.

Bounding Box Encoding: Since the detector might produce noisy heading directions, we first pre-
process the heading directions with a simple heuristic that flips inconsistent headings by 180◦ based
on majority voting. We next use a simple multi-layer perceptron (MLP) that maps box parameters
bi with updated heading directions to high-dimensional features ai = MLP(bi) ∈ RD.

Point Cloud Encoding: Previous works [1, 2] aggregate multi-frame points in the global frame
for feature extraction. However, in practice, humans estimate the relative transformation between
two point clouds by aligning them in the object frame. Motivated by this fact, we use the object
pose initialization bi to transform Oi from the trajectory frame to the object frame. We next learn
a representation of the object-frame points with a PointPillars [37]-style encoder. Specifically, we
first voxelize the object-frame points into a Nx ×Ny ×Nz grid, apply a PointNet [38] to all points
in each 3D voxel grid to extract per-voxel feature, and fuse all features along height to generate a
BEV feature map ∈ RNx×Ny×Dv . We next feed the BEV voxel feature map into a 2D convolutional
network (CNN) composed of a multi-scale ResNet [39] backbone followed by FPN [40] to obtain a
4× downsampled feature map Fi ∈ RN ′x×N

′
y×D

′
. Since the receptive field of the CNN is designed

to cover the entire object space, to retrieve point feature pi ∈ RD′ we simply index the feature map
Fi at its spatial center.

Feature Fusion: Finally, we fuse the box feature ai and point feature pi to derive the final frame-
wise feature fi = ai + MLP(pi) ∈ RD. We apply the same encoder with shared weights on each
frame individually and obtain a set of frame-wise feature tokens {fi}1≤i≤M .

3.2.2 Trajectory-level Understanding via Cross-Frame Attention

Intuitively, both box parameters and point observations are useful for trajectory refinement. How-
ever, traditional path smoothers and point cloud registration methods based on ICP [41, 42] fail
to fuse the information from both sources. In addition, ICP reasons on the point level and fails
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when the points are sparse or the point cloud pair has small overlaps. Structured optimization-based
approaches [7, 8] that combine both methods operate in an online fashion with limited temporal con-
text, and still suffer from ICP’s failure modes. To address these limitations from traditional methods,
we exploit the fused per-frame features (f1, . . . , fM ), and model relationships between frames at the
feature level via self-attention [5]. The attention module allows for efficient pairwise reasoning
across frames and offers the flexibility to operate on sequences with arbitrary length.
At a high level, the input to the attention module is the feature sequence (f1, . . . , fM ), and the out-
put (g

(L)
1 , . . . ,g

(L)
M ) represents the updated per-frame features after absorbing information from

the entire sequence. In particular, the attention module contains L attention blocks, where the
jth attention block consumes the previous block’s output feature sequence (g

(j−1)
1 , . . . ,g

(j−1)
M )

and generates an updated feature sequence (g
(j)
1 , . . . ,g

(j)
M ), with the first attention block input

g
(0)
i = fi. Each attention block contains a self-attention layer followed by a feed-forward MLP.

For each input feature vector g
(j−1)
i ∈ RD, the pre-norm self-attention mechanism first applies

LayerNorm [43] (LN) followed by three separate linear projections to derive query, key and value
vectors q

(j)
i ,k

(j)
i ,v

(j)
i ∈ RD respectively. We stack the keys and values from all M frames to

form matrices K(j),V(j) ∈ RM×D. Then, for each query frame i, we compute the attention scores
between frame i and all frames by comparing query vector q(j)

i and each key in K(j):

a
(j)
i = softmax

(
q
(j)
i K(j)T

√
dk

+wi

)
∈ RM , (1)

where dk is a scaling factor. Note that in Eq. 1 we adopt AliBi [44], which is a form of relative po-
sitional encoding that leverages positional difference between query and key frames. AliBi directly
adds weighted biases wi ∈ RM (with wij = −m · |i− j|, m is a fixed constant) to the dot product
attention score map and is shown to generalize better to longer sequences at test time.

With the attention scores, we can then obtain an aggregated feature with h
(j)
i = a

(j)
i V(j) ∈ RD.

We then apply the subsequent MLP layer to derive output features g(j)
i of the jth attention block:

h
′(j)
i = LN(g

(j−1)
i ) + h

(j)
i

g
(j)
i = MLP(LN(h

′(j)
i )) ∈ RD.

(2)

In practice, we use multi-head self-attention to increase expressivity, which partitions the D-
dimensional input feature vector into H groups, employs a separate self-attention head for each
feature group, and concatenates the output features from each attention head as the final feature.
Please refer to [5] for more details on multi-head attention. After L chained self-attention blocks,
the attention module outputs a sequence of updated feature vectors at each frame (g

(L)
1 , . . . ,g

(L)
M ),

which is used to decode the final bounding box trajectory.

3.2.3 Motion Path and Size Decoder

Given the feature sequence (g
(L)
1 , . . . ,g

(L)
M ), we decode the final motion path trajectory and object

size which is consistent for the entire trajectory. To decode the refined bounding box pose at each
frame, we simply feed the feature g

(L)
i into an MLP to obtain pose residual (∆xi,∆yi,∆θi) and

sum them with the initialization bi to obtain the final refined pose parameters (x̂i, ŷi, θ̂i) = (xi +
∆xi, yi + ∆yi, θi + ∆θi). To decode the refined object size, we leverage context from all frames
via mean pooling, and use an MLP to obtain a size residual (∆l,∆w) = MLP(mean({g(L)

i })). We
compute the final refined object size as (l, w) = (mean({li}) + ∆l,mean({wi}) + ∆w). The final
refined bounding box at each frame i will be b̂i = (x̂i, ŷi, l̂, ŵ, θ̂i).

3.3 Training

We train the entire model (i.e., encoder, attention module, decoder) end-to-end by minimizing a
combination of a regression loss that directly compares the refined box parameters b̂i with ground-
truth box parameters b?

i , and an IoU-based loss that compares the axis-aligned bounding boxes:

L({b̂i}, {b?
i }) = Lreg({b̂i}, {b?

i }) + LIoU ({b̂i}, {b?
i }). (3)
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Please see supp. for more details. We apply two forms of data augmentation during training: (1) we
randomly sample a subsequence of the input actor trajectory, and (2) we independently perturb each
initial bounding box by applying a translational offset uniformly sampled from [−0.25, 0.25]m for
x and y each, a rotational offset uniformly sampled from [−10, 10] degrees, and an offset uniformly
sampled from [max(−0.2,− li

2 ),min(0.2, li2 )] and [max(−0.1,−wi

2 ),min(0.1, wi

2 )] for the dimen-
sions. Note that the offsets are sampled per frame and applied to each bounding box separately.

4 Experiments

In this section, we evaluate the effectiveness of our approach on two real-world datasets. First, we
describe the experimental setting and metrics used for evaluation. Next, we show that our method
outperforms previous works on the trajectory refinement task for multiple initializations. Further-
more, we demonstrate that the improved refinement translates to downstream detection performance
when training with auto-labels, showcasing that our approach can be used to train better object
detectors. Finally, we conduct thorough ablation studies to analyze the effect of our design choices.

Datasets: We use two datasets to evaluate our method in both urban and highway domains, which
include object trajectories with diverse motion profiles. For the urban setting, we use the Argoverse
2 Sensor dataset [3] (AV2) that was collected in six distinct US cities. AV2 contains 850 15-second
long snippets and around 65.7k vehicle trajectories. The LiDAR data is fairly sparse as it is captured
by two 32-beam LiDARs that spin at 10Hz in the same direction but are 180◦ apart in orientation,
and we aggregate both LiDAR scans in the same sweep interval to form an input frame. We use the
official train and validation splits with 700 and 150 snippets each. For the highway setting, we use an
in-house Highway dataset, which contains 188 20-second long snippets collected from US highways
with roughly 5.8k vehicle trajectories. The LiDAR data in this dataset is denser as it comes from a
128-beam LiDAR sensor that spins at 10Hz. We split the dataset into 150 training snippets and 38
validation snippets. For our experiments in both datasets, we focus on auto-labelling vehicles in the
scene, with a detection region of interest of [-125, 200] meters longitudinally and [-50, 50] meters
laterally with respect to the ego vehicle’s traveling direction.

Metrics: Following [1], for each object k, we compute the track-level IoU Sk =
1

Mk

∑Mk

i=1 IoU(B?k
i , B̂

k
i ), where Mk is the trajectory length and B?k

i , B̂
k
i ∈ R5 are the respec-

tive ground-truth and refined BEV bounding box at each frame i. To aggregate across all N ob-
ject trajectories, we report the mean IoU as 1

N

∑N
k=1 S

k. To understand coverage, we addition-
ally report average recall at various IoU thresholds, i.e., RC@α = 1

N

∑N
k=1 1(Sk ≥ α), where

1(x ≥ α) =

{
1 if x ≥ α
0 otherwise

is the indicator function. In our results we choose IoU thresholds

α = 0.5, 0.6, 0.7, 0.8.

Implementation details: For the box encoder, we use a single linear layer to map the 5 box
parameters to an output dimension, D = 256. For the attention module, we use L = 6 attention
blocks, with H = 4 attention heads. Both the size and pose decoders are a single linear layer.
For both datasets, we train our model with the AdamW optimizer [45], with learning rate 5e-5 and
weight decay 1e-5. We apply linear learning rate warmup in the first two epochs followed by cosine
learning rate scheduling that eventually decays the initial learning rate (after warmup) by 10×. We
additionally clip the gradient norms at 5.0 as we empirically find this helps with learning. We train
our model for 100 epochs on the Highway dataset and 40 epochs on the AV2 dataset with a batch
size of 4. Please see supp. for more details on the point encoder and attention network.

Baselines: We compare our proposed LabelFormer with state-of-the-art auto-labelling methods
Auto4D [1] and 3DAL [2]. Since neither papers released their code, we reimplemented both methods
based on their implementation details and thoroughly tuned the hyperparameters. We follow the
original implementations to set the Auto4D’s temporal window size to be 10. For 3DAL dynamic
branch, we use the original bounding box temporal window size of 101 and raised the point window
size from 5 to 11 to increase model performance. Note that since the Highway dataset contains very
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Dataset First-Stage Detector Second-Stage Refinement Mean IoU RC @ 0.5 RC @ 0.6 RC @ 0.7 RC @ 0.8

AV2

PointPillars [37]

- 62.60 76.39 65.72 48.66 25.04
Auto4D [1] 65.49 79.47 70.35 56.04 32.40
3DAL [2] 64.58 77.25 67.92 53.93 32.53
Ours (LabelFormer) 68.28 81.22 73.22 60.68 40.78

VoxelNeXt [46]

- 65.70 78.92 68.90 54.37 32.44
Auto4D [1] 67.92 81.73 73.14 59.42 37.02
3DAL [2] 67.12 80.36 71.42 57.83 36.01
Ours (LabelFormer) 70.18 83.26 75.06 63.04 43.76

Highway

PointPillars [37]

- 60.20 69.83 59.62 46.11 26.58
Auto4D [1] 65.63 77.01 68.23 56.28 37.08
3DAL [2] 66.03 79.44 70.33 56.62 35.18
Ours (LabelFormer) 70.59 83.09 75.77 65.11 46.16

VoxelNeXt [46]

- 65.90 76.76 68.32 56.27 36.77
Auto4D [1] 69.27 79.36 72.81 63.37 45.39
3DAL [2] 68.17 80.61 73.07 60.61 38.85
Ours (LabelFormer) 72.38 83.68 77.45 68.33 50.06

Table 1: Comparison with state-of-the-art

few static objects, we train the 3DAL dynamic branch with all objects in the scene and only apply
the dynamic network during inference. For the AV2 dataset we apply the original 3DAL method
with both stationary and dynamic branches.

First-stage initialization: We obtain the first-stage coarse initializations by running a detection
and tracking model. For fair comparison between the refinement approaches, we train and evaluate
all refinement models on the same set of true-positive first-stage object trajectories, i.e., those that
can be associated with a ground-truth object trajectory (more details in supp.). To ensure our con-
clusions generalize, for each dataset, we evaluate the refinement approaches on initializations from
two detection models. Specifically, we experiment with a multi-frame version of PointPillars [37]
and a recent state-of-the-art detector VoxelNeXt [46] as the first-stage detector. Following [1, 2], we
implement a simple rule-based multi-object tracker, please see supp. for more details.
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Figure 3: Refinement quality vs. runtime

Refinement results against SOTA: Table 1
shows that in terms of refinement accuracy, our
method consistently outperforms the initializa-
tions and state-of-the-art auto-label refinement
methods by a large margin across both detector
initializations on both datasets. While existing
methods already have significant gains over the
initializations, our method is able to achieve on
average 92% more mean IoU gains. In addition, our method is able to achieve significantly higher
accuracy on both static and dynamic objects with a single network, as shown in supp. Furthermore,
we measure the average refinement run time on trajectories from the VoxelNeXt initialization, using
a single RTX2080 GPU. Results are shown in Fig. 3 alongside mean IoU. We find that LabelFormer
is 2.7× faster than the window-based dynamic 3DAL on the Highway dataset. On AV2, which has
52% of static objects, our method is still slightly faster than 3DAL which uses a non-window-based
static branch. Auto4D uses all available points while 3DAL samples at most 1024 points per frame,
resulting in Auto4D having much longer run time but higher performance at large IoU thresholds.

Auto-Label Mean AP AP@0.5 AP@0.7 AP@0.8

N/A 82.98 91.62 79.17 55.97
Init 83.63 92.67 79.51 55.30
Auto4D 83.42 92.71 79.32 55.07
3DAL 83.64 92.66 79.76 55.79
Ours 84.81 92.91 80.91 59.00

Table 2: [Highway] Downstream task

Improving object detection with auto-labeled data:
We additionally study the effect of the refined auto-
labels in the downstream object detection task. Specif-
ically, we use VoxelNeXt [46] as the first-stage de-
tector and train various auto-labellers on the main
Highway training set (consisted of 150 human-labelled
snippets), and use them to label an additional 500 Highway snippets. We then train a downstream
object detector with a combined dataset of 150 human-labelled snippets and 500 auto-labelled snip-
pets. Table 2 shows the average precision (AP) results. Overall, training with the bigger dataset
augmented with auto-labels is better than with the human-labelled dataset alone, and our refined
auto-labels give the biggest boost with a 3% gain at 0.8 IoU.

7



Box Enc. Point Enc. Perturb Window # Att Mean IoU RC@0.5 RC@0.6 RC@0.7 RC@0.8

M1 X X All 6 69.20 80.68 73.92 63.28 43.76
M2 X X All 6 70.17 81.73 74.74 64.20 45.61
M3 X X All 6 70.97 82.37 75.37 65.32 47.65
M4 X X X All 1 71.59 83.62 76.35 66.62 48.87
M5 X X X All 3 72.11 83.93 77.50 67.66 49.90
M6 X X X 5 6 71.18 82.33 75.44 65.81 48.80
M7 X X X 10 6 71.72 83.26 76.57 66.68 49.69
M8 X X X 20 6 71.92 83.14 76.62 67.08 49.91

M9 X X X All 6 72.38 83.68 77.45 68.33 50.06

Table 3: [Highway] Ablation study using the VoxelNeXt initializations. Perturb refers to the
bounding box perturbation augmentation, Window specifies the window size when applicable, and
“# Att” is the number of self-attention blocks.

Initialization LabelFormer

Figure 4: Qualitative results: Initialization vs. refinement. Auto-labels in orange, GT in magenta.

Effect of box and point features: M1 and M2 in Table 3 each only encode box features and point
features respectively. Comparing to M9 which uses both features, we show that both the box and
point features in the per-frame encoder stage contribute to the overall success of the model.

Effect of per-frame perturbation: M3 →M9 in Table 3 shows that the per-frame bounding box
perturbation augmentation we use helps with the final performance.

Effect of number of self-attention blocks: M4, M5 and M9 in Table 3 show that the refinement
accuracy grows with more attention blocks.

Effect of temporal context length: Finally, we train and run our method in a window-based
fashion to restrict the temporal context given to each method. M6, M7, M8 and M9 in Table 3 show
that the refinement accuracy steadily increases with more temporal context given to the model.

Qualitative results: Fig. 4 shows an example for which the observations are very sparse at the be-
ginning of the trajectory and get denser afterwards. LabelFormer is able to exploit the full temporal
context and improve the bounding box trajectory, especially at the most challenging frames. More
examples and comparisons with previously proposed refinement methods can be found in the supp.

5 Limitations

The two-stage auto-labelling paradigm has an inherent limitation: the second stage only refines the
continuous bounding box localization errors, but does not correct discrete detection errors (false
positives, false negatives) and tracking errors (id switches, fragmented tracklets). Such discrete
errors will propagate to the final output. Moreover, the refinement performance on the fragmented
tracklets may be sub-optimal due to the missing temporal context (otherwise present in the un-
fragmented tracklets). Therefore, a future direction is to explore alternative paradigms that can
recover from discrete errors too. Finally, a failure mode of our proposed refinement model is that it
can degrade the quality of the auto-labels with respect to initialization when the input trajectories are
short and have sparse observations. Such cases are challenging even to humans, yet future work can
try to address this by estimating auto-label uncertainty and leveraging it in downstream applications.

6 Conclusion

In this work, we study the trajectory refinement problem in a two-stage LiDAR-based offboard
perception paradigm. Our proposed method, LabelFormer, is a single transformer-based model that
leverages full temporal context of the trajectory, fusing information from the initial path as well as
the LiDAR observations. Compared to prior works, our method is simple, achieves much higher
accuracy and runs faster in both urban and highway domains. With the ability to auto-label a larger
dataset effectively and efficiently, LabelFormer helps boost downstream perception performance,
and unleashes the possibility for better autonomy systems.
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Supplementary Materials

A Implementation and Experiment Details

A.1 Model Details

Point Encoder: The point encoder is consisted of a voxelizer followed by a CNN-based backbone
and a Feature Pyramid Network (FPN) [40].

Specifically, the voxelizer employs voxel resolution of 10cm in all of X , Y and Z directions, with a
region of interest of [-12, 12] meters along X , [-4, 4] meters along Y , and [-0.2, 3.0] meters along
Z, to construct a Nx ×Ny ×Nz voxel grid with Nx = 240, Ny = 80 and Nz = 320. For all points
in each 3D voxel grid, we first represent each point as (∆x,∆y,∆z,∆t) where (∆x,∆y,∆z) is
the positional offset with respect to the voxel centroid and ∆t = t − tref is the difference between
the per-point time and the LiDAR sweep end time of the middle frame in the object trajectory. We
feed this four-vector representation of each point into a two-layer MLP with 16 output channels
each, and LayerNorm [43] and ReLU applied right after the first layer. Then, for each voxel, we
pool all point features inside by summing them and applying a LayerNorm after to derive voxel
grid features RNx×Ny×Nz×16, which can be viewed as Nx ×Ny “feature pillars” along the Z axis.
We additionally encode an z-axis positional embedding via a learnable variable block ∈ RNz×16.
We concatenate the non-empty voxels in each feature pillar with the positional embedding block to
obtain an augmented feature ∈ RN ′z×32 (N ′z ≤ Nz is the number of non-empty voxels in the pillar),
and pass through a two-layer MLP with 16 and 32 output channels each (with LayerNorm and ReLU
in between), apply LayerNorm after the second layer, and sum all the features along each pillar to
obtain a BEV feature map∈ RNx×Ny×32.

The backbone takes the BEV feature map as input and first applied three stem layers with 120, 96,
96 output channels each. Each stem layer is consisted of a 3x3 convolutional layer, followed by
GroupNorm (GN) and ReLU. The first stem layer has stride of 2 while the next two have a stride
of 1. Then, the output passes through three downsampling stages. The three downsampling stages
contain 6, 6, 4 ResNet [39] blocks with 288, 384, 576 output channels respectively. Each ResNet
block applies a sequence of 1x1 conv, GN, ReLU, 3x3 conv (with an optional stride parameter),
GN, ReLU, 1x1 conv, GN, ReLU to obtain a residual and sum with the input. Each downsampling
stage downsamples the input by a factor of 2× within the first ResNet block, where the first ResNet
block has stride 2 in the middle 3x3 conv, and the residual output is added to the input that is
downsampled with a 1x1 conv block with stride 2 followed by GN. The remaining ResNet blocks in
each downsampling stage all have stride of 1.

The FPN takes the outputs from all three stages in the backbone, which are 4×, 8× and 16× down-
sampled from the original resolution (the stem layers downsample the input by 2×, and each down-
sampling stage in the backbone further downsamples by 2×). The FPN module fuses the two lowest
resolution feature maps first by applying a 1x1 conv block + GN to the 16× low-resolution map, up-
sampling it by 2×with bilinear interpolation, and adding it to the 8× downsampled feature map. We
then perform a similar operation to fuse the 4× downsampled feature map with the newly fused 8×
downsampled feature map, and apply a final 3x3 conv to output a feature map of 4× downsampled
original resolution with channel dimension 256 as the feature map of per-frame points.

Attention Block: We next provide more details on the feed-forward MLP in each attention block.
The feed-forward MLP is consisted of a linear layer with input dimension 256 and output dimension
512, followed by ReLU, DropOut with 10%, a second linear layer with input dimension 512 and
output dimension 256 and another DropOut with 10%. We add the output of the MLP to the input
of the MLP and return the sum.
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Training Loss Details: In this section, we provide detailed definitions for our loss functions. The
regression loss is defined as:

Lreg({b̂i}, {b?
i }) =

λ

M

∑
i

smooth`1(x̂i, x
?
i ) + smooth`1(ŷi, y

?
i ) + smooth`1(l̂, l?) + smooth`1(ŵ, w?)

+
1

M

∑
i

smooth`1(sin (2θ̂i), sin (2θ?i )) + smooth`1(cos (2θ̂i), cos (2θ?i )) ,

(4)

with the hyperparameter λ = 0.1 in practice, and the IoU loss is given by:

LIoU ({b̂i}, {b?
i }) =

1

M

∑
i

IoU(BBox(x̂i, ŷi, l̂, ŵ),BBox(x?i , y
?
i , l

?, w?)) , (5)

to compare the axis-aligned refined and ground-truth bounding box in each frame.

A.2 Detector and Tracker

To obtain the first-stage coarse initialization, we follow the standard “detect-then-track” approach
where a detection model is trained to output per-frame detections and we leverage a tracker to obtain
consistent tracklets over time. Next, we give more details about the detector and tracker we use.

Detector: To boost detection performance, we adapt the single-frame public implementation of
both PointPillars [37] and VoxelNeXt [46] to a multi-frame version that additionally takes 4 past
history frames and 4 future frames as input. The validation mean AP of the single-frame vs. multi-
frame PointPillars models are 68.78% and 71.02% on the Highway dataset respectively, and 55.98%
and 60.58% on AV2 respectively. The validation mean AP of single-frame vs. multi-frame Voxel-
NeXt are 81.87%/84.25% on Highway and 60.06%/66.25% on AV2.

Tracker: Following [1, 2], we use a simple online tracker, which is largely inspired by [47], and
we provide the implementation details of our tracker, in particular how association is performed
across frames.

For each new frame at time step t with detections Bt = {bl
t} where each bl

t = (xlt, y
l
t, l

l
t, w

l
t, θ

l
t) ∈

R5 is the individual 2D BEV bounding box, we first filter with Non-Maximum Suppression with
IoU threshold 0.1, and then filter out bounding boxes with low confidence scores. We then compute
a cost matrix with existing tracklets St = {sjt} as follows. For each tracklet j, we first predict
its bbox position (xjt , y

j
t ) at time t: if the tracklet has at least two past frames, we set (xjt , y

j
t ) =

2 ∗ (xjt−1, y
j
t−1) − (xjt−2, y

j
t−2) via naive extrapolation (assuming constant velocity between two

adjacent frames); otherwise we simply set (xjt , y
j
t ) = (xjt−1, y

j
t−1). Then, for each pair of the

detected bbox bl
t and the predicted tracklet bbox bj

t , we compute the Euclidean distance between

the bbox centroids as `j,l =

√
(xjt − xlt)2 + (yjt − ylt)2. For each existing tracklet, we simply

employ a greedy strategy to find the nearest detection l∗ = arg minl `
j,l, and if the closest distance

lj,l
∗

is greater than a threshold of 5.0m, then the tracklet has no match. We use greedy matching
instead of a more sophisticated matching strategy such as Hungarian matching because it is more
robust to noisy and spurious detections.

If a tracklet is matched to a new detection, we add the detection to the tracklet and update the tracklet

score cjt =
w·cjt−1+clt

w+1.0 , where cjt−1 is the old tracklet score, clt = 1.0 is the detection confidence score

we set for every new detection, and w =
∑nj

t−1

i=1 0.9i where njt−1 is the number of tracking steps in
the tracklet.

If a tracklet is not matched, we grow the tracklet by naively extrapolating the position and angle,
and set the new confidence score as cjt = 0.9cjt−1.

If a new detection is not matched to any tracklet, we start a new tracklet and initialize the confidence
score cjt with the detection’s confidence.
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Motion State First-Stage Detector Second-Stage Refinement Mean IoU RC @ 0.5 RC @ 0.6 RC @ 0.7 RC @ 0.8

Stationary

PointPillars

- 64.46 79.34 69.95 53.58 28.66
Auto4D 67.51 82.56 74.66 61.26 36.91
3DAL 68.00 81.35 75.04 63.26 41.93
Ours (LabelFormer) 70.67 84.08 77.31 66.03 46.81

VoxelNeXt

- 68.91 83.53 75.15 61.53 38.81
Auto4D 70.87 86.11 79.06 66.28 42.86
3DAL 70.63 84.55 77.74 66.50 45.13
Ours (LabelFormer) 73.21 86.77 80.09 69.54 51.08

Dynamic

PointPillars

- 60.53 73.12 61.04 43.23 21.03
Auto4D 63.26 76.05 65.56 50.27 27.41
3DAL 60.80 72.70 60.03 45.36 22.12
Ours (LabelFormer) 65.64 78.06 68.69 54.74 34.10

VoxelNeXt

- 62.25 73.96 62.17 46.66 25.57
Auto4D 64.73 77.01 66.77 52.02 30.72
3DAL 63.33 75.85 64.60 48.55 26.18
Ours (LabelFormer) 66.93 79.49 69.64 56.04 35.88

Table 4: [AV2] Performance break-down for ground-truth stationary vs. dynamic objects

Bbox Enc. Point Enc. Perturb Window # Att Mean IoU RC@0.5 RC@0.6 RC@0.7 RC@0.8

M1 X X All 3 64.20 69.83 59.62 46.11 26.58
M2 X X All 3 69.56 82.36 75.84 64.72 44.50
M3 X X All 3 68.91 80.84 73.05 61.65 42.89
M4 X X X 5 3 69.07 81.19 74.17 63.47 45.05
M5 X X X 10 3 69.33 81.83 74.80 64.12 45.42
M6 X X X All 3 70.59 83.09 75.77 65.11 46.16

M7 X X X All 6 70.93 83.50 76.51 66.34 47.85

Table 5: [Highway] Ablation study using the PointPillars initializations. Perturb refers to the
bounding box perturbation augmentation, Window specifies the window size when applicable, and
# Att is the number of self-attention blocks.

We terminate all tracklets with a tracking confidence score less than 0.1, and apply NMS at the end
over all existing tracklets in the current frame with an IoU threshold of 0.1. We repeat this process
for the next frame at time t+ 1 until the end of the sequence.

A.3 Association with GT Trajectories

For each initial object trajectory detected and tracked in the first stage, we use a simple heuristic
to associate it with a ground-truth object trajectory as follows: for each frame that the detected
trajectory is present, we identify the ground-truth bounding box that has the maximum IoU with the
detected bounding box in that frame. If such ground-truth box has IoU less than 10%, then we fail
to find a matching ground-truth box for this frame. As a result we obtain M ′ ground-truth object
IDs for a detected trajectory of length M , with 0 ≤ M ′ ≤ M as we might not be able to find a
ground-truth ID for every frame. If M ′ is 0, then we have failed to find an associated ground-truth
object: we consider the detected object as a false positive and discard it in trajectory refinement
training and evaluation. Otherwise we take the most common ground-truth actor id out of the M ′

objects and assign it as the associated ground-truth object trajectory for training and evaluation.

B Additional Experiments

Static vs. Dynamic Objects The AV2 validation set contains around 52% stationary objects (we
classify an actor as static if the max displacement in the ground-truth displacement in allX , Y and Z
direction is within 1.0m). Table 4 additionally shows the dynamic vs. stationary object break-down
on the AV2 dataset. Our method is able to achieve significantly higher refinement accuracy on both
static and dynamic objects with a single network.

Ablation with PointPillars Init: We additionally performed the same set of ablation studies as
Table 3 in the main paper on the Highway dataset with the PointPillars-based initializations. Table 5
shows the results, which give the same conclusions as the VoxelNeXt-based initializations in the
main paper.
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Architecture Mean IoU RC @ 0.5 RC @ 0.6 RC @ 0.7 RC @ 0.8

Init 65.90 76.76 68.32 56.27 36.77
MLP (1-layer) 70.14 81.56 74.20 63.95 46.23
MLP (3-layer) 70.50 82.31 74.82 65.04 46.80
MLP (6-layer) 70.50 82.31 74.82 65.04 46.80

LabelFormer(6-block) [44] 72.38 83.68 77.45 68.33 50.06

Table 6: [Highway] Ablation of MLP vs. Transformer using the VoxelNeXt initializations

Positional Encoding Mean IoU RC @ 0.5 RC @ 0.6 RC @ 0.7 RC @ 0.8

Absolute [5] 71.71 83.63 76.97 67.11 48.67
AliBi [44] 72.38 83.68 77.45 68.33 50.06

Table 7: [Highway] Ablation of positional encoding using the VoxelNeXt initializations

MLP vs. Transformer To understand whether attention/transformer-like architecture helps, we
ablate the effect of the cross-frame attention module by replacing it with an MLP. Specifically, to
aggregate features across frames, we mean pool the per-frame features from all frames, apply an
MLP to the pooled features, and then add the aggregated feature back to each frame-level feature.
The updated per-frame features are then passed to the decoder module of LabelFormer. For the
MLP, each layer consists of a linear layer, followed by LayerNorm and ReLU. We conducted this
experiment with 1, 3, 6 layers respectively. The results in Table 6 show that the cross-frame attention
module outperforms the MLP architecture by a large margin, demonstrating the benefits of attention
with a 40.9% higher relative gain in mean IoU.

Positional Encoding We additionally ablate our choice of positional encoding with the VoxelNeXt
initialization on the Highway dataset. Table 7 shows that the relative positional encoding AliBi [44]
gives overall better performance than using the vanilla absolute positional encodings [5].

C Qualitative Results

In this section we show qualitative results for trajectory refinement, comparing LabelFormer with
the coarse initialization, 3DAL [2] and Auto4D [1].
We illustrate initial and refined auto-labels for the Highway dataset with VoxelNeXt initializa-
tions. Fig. 5 showcases trajectories of two objects on the top that have sparse observations (and
hence worse initializations) at the beginning, and denser observations towards the end, and ours La-
belFormer is able to give better refinement for the worse initializations because it is able to leverage
more temporal context more effectively than previous works. Fig. 5, 6, 7, 8 additionally showcase
that our method works better qualitatively on trajectories with both sparse and dense observations
and with various speeds. For more visualizations on Argoverse, please refer to the supplementary
video.
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Init Mean IoU: 73.73

3DAL Mean IoU: 75.37

Auto4D Mean IoU: 80.40

LabelFormer Mean IoU: 85.77

Init Mean IoU: 83.05

3DAL Mean IoU: 77.28

Auto4D Mean IoU: 88.55

LabelFormer Mean IoU: 88.34

Init Mean IoU: 80.43

3DAL Mean IoU: 81.55

Auto4D Mean IoU: 89.82

LabelFormer Mean IoU: 88.54

Init Mean IoU: 78.53

3DAL Mean IoU: 80.71

Auto4D Mean IoU: 82.59

LabelFormer Mean IoU: 86.89

Figure 5: [Highway] Qualitative results showcasing different object trajectories (first-stage init,
refined by 3DAL, Auto4D and Ours LabelFormer) in each object’s trajectory coordinate frame. The
ground-truth bounding box is in magenta, and the auto-label is in orange. To avoid cluttering, we
visualize every other three bounding box in the first 50 frames of the trajectory.
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Init Mean IoU: 77.10

3DAL Mean IoU: 80.47

Auto4D Mean IoU: 86.89

LabelFormer Mean IoU: 87.86

Init Mean IoU: 80.43

3DAL Mean IoU: 86.14

Auto4D Mean IoU: 85.01

LabelFormer Mean IoU: 89.62

Init Mean IoU: 62.84

3DAL Mean IoU: 67.26

Auto4D Mean IoU: 68.23

LabelFormer Mean IoU: 81.50

Init Mean IoU: 79.05

3DAL Mean IoU: 80.96

Auto4D Mean IoU: 86.52

LabelFormer Mean IoU: 90.34

Init Mean IoU: 72.12

3DAL Mean IoU: 81.15

Auto4D Mean IoU: 84.38

LabelFormer Mean IoU: 85.98

Figure 6: [Highway] More qualitative results. Ground-truth in magenta, auto-labels in orange.
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Init Mean IoU: 65.72

3DAL Mean IoU: 77.98

Auto4D Mean IoU: 80.67

LabelFormer Mean IoU: 84.58

Init Mean IoU: 62.84

3DAL Mean IoU: 67.26

Auto4D Mean IoU: 68.23

LabelFormer Mean IoU: 81.50

Init Mean IoU: 62.55

3DAL Mean IoU: 69.17

Auto4D Mean IoU: 69.73

LabelFormer Mean IoU: 76.55

Init Mean IoU: 63.06

3DAL Mean IoU: 74.98

Auto4D Mean IoU: 74.44

LabelFormer Mean IoU: 85.72

Figure 7: [Highway] More qualitative results. Ground-truth in magenta, auto-labels in orange.
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Init Mean IoU: 63.74

3DAL Mean IoU: 66.65

Auto4D Mean IoU: 80.50

LabelFormer Mean IoU: 82.37

Init Mean IoU: 80.19

3DAL Mean IoU: 81.81

Auto4D Mean IoU: 82.59

LabelFormer Mean IoU: 86.46

Init Mean IoU: 79.63

3DAL Mean IoU: 81.94

Auto4D Mean IoU: 82.04

LabelFormer Mean IoU: 87.48

Figure 8: [Highway] More qualitative results. Ground-truth in magenta, auto-labels in orange.
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