
SaLF: Sparse Local Fields for Multi-Sensor Rendering in Real-Time

Yun Chen1,2* Matthew Haines 1,3? JingKang Wang1,2

Krzysztof Baron-Lis1 Sivabalan Manivasagam1,2 Ze Yang1,2 Raquel Urtasun1,2

1Waabi 2 University of Toronto 3University of Waterloo
{ychen, jwang, siva, klis, zyang, urtasun}@waabi.ai, m4haines@uwaterloo.ca

Abstract

High-fidelity sensor simulation of light-based sensors such
as cameras and LiDARs is critical for safe and accurate au-
tonomy testing. Neural radiance field (NeRF)-based meth-
ods that reconstruct sensor observations via ray-casting of
implicit representations have demonstrated accurate simu-
lation of driving scenes, but are slow to train and render,
hampering scalability. 3D Gaussian Splatting (3DGS) has
demonstrated faster training and rendering times through
rasterization, but is primarily restricted to pinhole camera
sensors, preventing usage for realistic multi-sensor auton-
omy evaluation. Moreover, both NeRF and 3DGS couple
the representation with the rendering procedure (implicit
networks for ray-based evaluation, particles for rasteriza-
tion), preventing interoperability, which is key for general
usage. In this work, we present Sparse Local Fields (SaLF),
a novel volumetric representation that supports rasteriza-
tion and raytracing. SaLF represents volumes as a sparse
set of 3D voxel primitives, where each voxel is a local im-
plicit field. SaLF has fast training (<30 min) and render-
ing capabilities (50+ FPS for camera and 600+ FPS for
LiDAR), has adaptive pruning and densification to easily
handle large scenes, and can support non-pinhole cam-
eras and spinning LiDARs. We demonstrate that SaLF
delivers realism comparable to existing self-driving sen-
sor simulation methods while improving efficiency and en-
hancing capabilities, thereby enabling more scalable sim-
ulation. Please visit our project page for more results:
https://waabi.ai/salf

1. Introduction

Closed-loop simulation has become an integral part of test-
ing self-driving vehicles. In order to test the full autonomy
system, modern simulators are equiped with the ability to
simulate the sensors (e.g. LiDAR, camera) that the self-
driving vehicle utilizes to perceive the world. Such a multi-

*Equal contributions.

Ef
fic

ie
nc

y

Sensor Modeling Capability HighLow

Lo
w

Hi
gh

✗ Pinhole camera only
✗ Rasterization only
✔ Fast rendering
✔ Memory-efficient

3DGS-based
(e.g. Street Gaussians)

NeRF-based
(e.g. UniSim, NeuRAD)

SaLF ⭐
✔ Multi Sensors
✔ Full ray model
✔ Fast rendering
✔ Memory-efficient

✔ Multi Sensors
✔ Full ray model
✗ Slow rendering
✗ Large memory

Capability-Efficiency Tradeoff

Ef
fic

ie
nc

y

Sensor Modeling Capability HighLow

Lo
w

Hi
gh

✗ Pinhole camera only
✗ Rasterization only
✔ Fast rendering
✔ Memory-efficient

3DGS-based
(e.g. Street Gaussians)

NeRF-based
(e.g. UniSim, NeuRAD)

SaLF ⭐
✔ Multi Sensors
✔ Full ray model
✔ Fast rendering
✔ Memory-efficient

✔ Multi Sensors
✔ Full ray model
✗ Slow rendering
✗ Large memory

Figure 1. SaLF combines high efficiency with advanced sensor
modeling capabilities for self-driving simulations.

modal sensor simulation system should be realistic to accu-
rately measure autonomy performance, and be very efficient
to enable scalable testing and training.

Neural Radiance Field (NeRF)-based representations
[28] have made significant progress in building realistic 3D
multi-sensor simulators for self-driving [11, 31, 42, 43, 48,
51]. These methods represent the driving scene as a com-
posable set of dynamic actors and static background that
are modelled as 3D implicit representations. Each sensor is
modelled as a set of outgoing rays into the scene representa-
tion according to its extrinsincs and intrinsics. NeRF-based
methods then generate sensor data by querying the repre-
sentations in space and time for the outgoing radiance along
each ray and performing volume rendering that models how
light interacts with the scene, resulting in high-fidelity out-
puts. However, their computational demands in training
(multiple hours per scene) as well as rendering (1-2 FPS)
have limited their use for scalable real-time simulation, es-
pecially when more than 20 sensors may be present on the
vehicle [45]. Several methods have improved NeRF ren-
dering efficiency by baking to accelerated representations
suitable for fast rendering, such as meshes [5, 12, 25, 54] or

https://waabi.ai/salf

Lighting-aware Actor Insertion

A unified representation for advanced sensor modeling

Camera (1080P): 54.5 FPS

Ray Tracing: Refraction and Shadow

360° Panorama Image

Multi-sensor rendering in real-time

LiDAR (100K+ rays): 640 FPS

Distorted Camera Rolling-Shutter LiDAR

Figure 2. Real-time self-driving sensor simulation with SaLF representation. Our method achieves high-performance rendering for
both camera and LiDAR, and supports advanced features including secondary effects (e.g., refraction, reflection and shadow) and complex
sensor models (e.g., fisheye, rolling-shutter and panoramic cameras). This is made possible by an efficient and unified representation that
supports both rasterization and ray-tracing.

grid look-ups [35, 56]. However, these methods still suffer
from time-consuming training and complicated baking pro-
cedures that can be of lower quality compared to the original
trained representation.

3D Gaussian Splatting (3DGS) [17, 50, 61] has recently
demonstrated fast training and real-time rendering for cam-
era images. This approach models the static and dynamic
parts of the scene as a large set of explicit 3D Gaussian par-
ticles, assumes a pinhole camera model, and performs ras-
terization, “splatting” the particles and alpha-compositing
them onto the image plane to generate the final image.
Like other rasterization-based approaches, 3DGS does not
directly support “ray-based” rendering, which is required
for more complex sensor models such as rolling-shutter Li-
DARs or fish-eye cameras that are commonly used in self-
driving. Moreover, it is difficult to accurately model sensor
phenomena such as motion blur and secondary lighting ef-
fects like refraction, which are crucial for realistic testing of
robust self-driving systems [27, 32, 44]. These limitations
restrict its use in comprehensive self-driving testing despite

its real-time rendering capabilities. Furthermore, similar to
how meshes in graphics are compatible with both raytracing
and rasterization, we argue that there should be a learnable
volumetric representation that supports both as well.

In this work, we propose a novel representation called
Sparse Local Field (SaLF). which seamlessly supports effi-
cient raytracing and rasterization. SaLF is composed of a
set of voxel primitives, where each voxel is a local implicit
field that maps spatial coordinates to geometry and appear-
ance. Similar to NeRF, SaLF can be volume rendered in a
ray-casting fashion and can accurately model LiDAR and
complex cameras. Without any baking, SaLF’s voxels can
natively be backed by an octree, directly supporting accel-
erated raytracing. Similar to 3DGS, SaLF can be rasterized
efficiently using a tile-based rasterizer, enabling fast pin-
hole camera rendering. Additionally, SaLF supports adap-
tive voxel pruning and densification, creating compact rep-
resentations and enabling modeling of large scenes.

SaLF efficiently and unifiedly supports a comprehen-
sive set of sensor models and complex phenomena such

as rolling-shutter effects and refraction, which makes SaLF
particularly valuable for scalable sensor simulation in au-
tonomous driving. Experiments on the public self-driving
dataset demonstrate that compared to prior work for self-
driving sensor simulation, SaLF is more efficient in train-
ing and rendering while exhibiting comparable realism. We
also showcase raytracing-based applications of SaLF, high-
lighting its potential for fast and versatile sensor simulation.

2. Related Work
Efficient NeRFs: Neural Radiance Fields (NeRF) [28]
have become the foundation for photorealistic 3D scene re-
construction from 2D images. However, the vanilla NeRF
formulation is computationally intensive, often requiring
days of training and significant inference time, limiting its
practicality for real-time applications. Recent works have
focused on improving training [1, 2, 20, 24, 30, 39, 57]
and rendering [5, 10, 12, 34, 35, 54] efficiency. DVGO [39]
and Plenoxels [57] replace the global MLP in NeRF with
a sparse 3D grid and tiny global MLP or explicit spher-
ical harmonics. Instant-NGP [30] further adopts multi-
resolution hash encoding for compactness. To enable real-
time rendering, “baking” methods pre-compute and store
the neural field properties to efficient representations such
as sparse voxel grids [12], triplanes [35], or hierarchi-
cal data structures (octree [56] and VDB [10]). Another
line of work aims to extract explicit meshes [5, 25, 54]
and leverage the real-time rasterization pipeline. How-
ever, these approaches either cannot be applied to large
scenes [5, 12, 54, 56] due to intractable memory usage,
or degrade in quality when baked [10, 25, 56], and typi-
cally have long training times [5, 12, 54]. Concurrently,
SVR [40] perform voxel rasterization but focuses on camera
without supporting ray-based sensor models. In contrast,
SaLF optimizes and renders efficiently for multi-sensor in
large scenes without baking.

3DGS: 3D Gaussian Splatting (3DGS) [17] generates
photorealistic renderings by representing scenes with ori-
ented 3D Gaussians. 3DGS enables real-time rendering
through point splatting and tile-based rasterization, greatly
reducing training and inference time. 3DGS has been
applied to 3D generation [55, 58] and camera simula-
tion [4, 6, 16, 50, 61]. However, like other rasterization-
based approaches, 3DGS assumes a pinhole camera model
and does not support flexible “ray-based” rendering like
NeRF, which limits its applicability in simulating rolling-
shutter LiDARs and fish-eye cameras. Several concurrent
works [3, 13, 22, 23, 36, 47] have extended 3DGS to sup-
port non-pinhole sensors by reformulating projection mod-
els or approximating sensor-specific effects. However, their
sensor-specific solutions hinder generalization to new sen-
sor configurations. Other concurrent works [29, 60] apply

ray-tracing on 3DGS but lack compatibility with rasteriza-
tion, In contrast, our unified representation supporting both
rasterization and ray-tracing, enabling real-time rendering
for various sensors.

Data-driven Sensor Simulation for Self-Driving: Tra-
ditional graphics-based [8, 37] simulation via game engines
have been widely used for autonomy development, but have
high domain gap due to differences in content, scene geom-
etry, appearance, and rendering fidelity. Data-driven neu-
ral rendering approaches [31, 51] have attracted significant
attention due to their photorealism and ability to recon-
struct from diverse real world scenes. [21, 31, 42, 43, 51]
use NeRFs to build compositional digital twins and decom-
pose background (e.g., road, building), actors and sky as
separate MLPs, enabling realistic and controllable camera
and LiDAR [42, 46, 51] simulation with single-pass driv-
ing data. However, these works usually require hours of
GPU training for one 10 sec. driving snippet, and cannot
perform real-time rendering. To address this issue, recent
works [6, 50, 61] leverage a compositional 3DGS represen-
tation for real-time camera simulation but are restricted to
pinhole cameras and cannot directly model ray-based phe-
nomena. In contrast, we build the first self-driving neural
sensor simulator that supports real-time rendering for com-
plex cameras and LiDAR.

3. SaLF Sparse Local Fields

We present SaLF (Sparse Local Fields), a novel volumetric
representation that supports efficient tile-based rasterization
and flexible, high-fidelity ray-casting of complex scenes. In
this section, we detail our scene representation (Sec. 3.1)
and our rasterization and ray-casting rendering algorithms
(Sec. 3.2), the coarse-to-fine densification strategy for com-
pactness and efficient training (Sec. 3.3), and discuss how
SaLF compares to NeRF and 3DGS (Sec. 3.4).

3.1. Representation
SaLF represents scenes using a sparse grid of local implicit
fields that map global 3D coordinates and view-directions
to spatial properties such as density and color. Let V ⊂ R3

be a three-dimensional volume in an axis-aligned bounding
box (AABB) with dimensions (Vh, Vw, Vd). We partition V
into a regular grid G of dimensions dVh/s0e × dVw/s0e ×
dVd/s0e, where each voxel is a cube with edge length s0.
Each voxel supports recursive sub-division into 8 smaller
voxels, up to K levels (s0 . . . sk). To efficiently handle
large-scale scenes, we employ a sparse representation that
stores only non-empty voxels.

Each voxel is characterized by its static geometric pa-
rameters: position p ∈ R3, scale s ∈ R, and rotation
q ∈ R4. q represents the orientation relative to the global

Figure 3. SaLF Representation. Left: SaLF models scenes us-
ing an adaptive sparse voxel grid with variable scales. Each voxel
is characterized by static parameters and learnable parameters .
Right: Within a voxel, for any point with normalized coordinates
x, the density σ and color c values are derived from Wσ and Wc

along with the encoded view direction γ(ω) modulating Wsh. The
opacity α of a ray is calculated using the density at the intersection
midpoint and the traversal distance δ.

coordinate system, with all voxels initialized to the identity
quaternion in the global frame. Each voxel also contains a
geometry field Wσ ∈ R1×4 and a color field Wc ∈ R3×3,
along with 2nd order spherical harmonics Wsh ∈ R3×4 for
view-dependent lighting effects. For any point inside the
voxel, let x ∈ [−1, 1]3 denote its normalized local coordi-
nates, and x̂ = [x, 1] be its homogeneous representation.
The geometry field fσ(x;Wσ) : [−1, 1]3 → R+ computes
the density as:

σ = fσ(x;Wσ) = exp(Wσ x̂T). (1)

Similarly, the color field fc(x, ω;Wc,Wsh) : [−1, 1]3 ×
S2 → [0, 1]3 computes the color value as:

c = sigmoid(WcxT +Wshγ(ω)) (2)

where ω ∈ S2 is the view direction and γ : S2 → R4 maps
the view direction to spherical harmonics basis coefficients.

Volume rendering: We render the color Ĉ for each ray
by accumulating the color and opacity values of intersected
voxels along the ray, following the volume rendering equa-
tion as in NeRF:

Ĉ =

Nc∑
i=1

Tiαici, (3)

where Nc is the number of intersected voxels along the
ray, Ti represents the accumulated transmittance Ti =∏i−1
j=1(1 − αj) and αi denotes the opacity computed from

the density value σi and ray segment length δi within the
i-th voxel:

αi = 1− exp(−σiδi). (4)

The density σi and color ci values are sampled at the mid-
point of each ray-voxel intersection segment using Eq. (1)
and Eq. (2), respectively.

Figure 4. SaLF can be efficiently rendered by ray-casting (left)
and rasterization (right). Ray casting is more flexible and can
handle more complex physics phenomena, while rasterization is
more efficient for pinhole cameras. Both follow the same render-
ing equation.

Surface parameterization: Autonomous driving scenes
require high-quality surfaces to enable accurate LiDAR
simulation and secondary ray effects such as reflection. In-
stead of directly representing density asWσ , we follow pre-
vious approaches [11, 42, 51] to adopt a signed distance
function (SDF) for better surface parameterization. The ge-
ometry SDF field denoted as Ws, quantifies the signed dis-
tance (s±) between a point x and the surface as:

s± = Wsx̂T (5)

We transform s± to density σ following VolSDF [38, 53]:

σ =
a

2
+
a

2
sign(s±)

(
1− e−|s±|/b

)
. (6)

The final learnable parameters of each voxel are the geom-
etry field Ws, the color field Wc, the spherical harmonics
Wsh, and the SDF-to-density parameters a, b.

3.2. Efficient Rendering of SaLF
As shown in Fig. 4, SaLF is interoperable and can be ren-
dered via ray-casting through the volume and computing
ray-voxel intersections, or by splatting and compositing
voxels onto the image plane (i.e., rasterization). Both can
be implemented following the volume rendering equation
in Eq. (3), with rasterization being faster but making more
approximations in the image formation process. The ray-
casting approach is more flexible and can handle more com-
plex physics phenomena and sensor models. We now dis-
cuss in more detail our efficient implementations of each.

Ray-Casting with Octree Acceleration: SaLF can be
rendered as NeRF by casting rays through the voxels from
the sensor origin, sampling points, and accumulating their
color and opacity. To accelerate ray-marching and ray-
voxel intersection checks, we employ an octree data struc-
ture. The octree recursively partitions the volume into eight
sub-volumes, where non-leaf nodes maintain pointers to
their sub-volumes, and leaf nodes either store−1 for empty

Figure 5. Initialization and Densification. SaLF initializes the
scene representation with a coarse regular grid partitioning, then
adaptively prune empty region while densifying regions that need
fine-details.

space or a pointer to the corresponding voxel. This hierar-
chical structure enables fast ray traversal through the vol-
ume. Through a single ray-box intersection test, empty
regions can be bypassed. Upon encountering non-empty
nodes, traversal selectively descends into intersected child
octants with logarithmic complexity.

Tile-based Splatting: SaLF can also be rendered by
splatting, which projects voxels onto the image plane, com-
positing them with alpha blending. Following 3DGS, we
divide the image plane into a grid of 16× 16 tiles. For each
tile, we perform view-frustum culling to identify and sort
relevant voxels. Each tile is rendered by a thread block to
iterate over the relevant voxels. Crucially, we preload these
voxels into shared memory to reduce global memory access,
which is a key optimization that significantly accelerates
rendering. The opacity for each voxel is computed based
on current pixel’s ray travel distance within each voxel us-
ing Eq. (4), and the color is sampled from the color field at
the intersection point. For a pinhole camera with primary
rays, the splatting achieves significant acceleration through
tile-based processing and shared memory. Please refer to
supp. for more details.

3.3. Initialization and Densification
Naive uniform voxelization of large-scale scenes at high
resolution leads to prohibitive memory consumption that
scales cubically with scene size. To address this challenge,
we adopt a coarse-to-fine approach as shown in Fig. 5. Dur-
ing training, we initialize the scene with a coarse repre-
sentation and apply an adaptive densification and pruning
strategy. Voxels exhibiting significant color field gradients
are subdivided into eight child voxels in an octree-aligned
manner. Voxels with negligible opacity values are removed
from the sparse set. Densification and pruning together en-
ables preserving of fine details while maintaining a compact
memory footprint.

3.4. Comparison with 3DGS and NeRF
SaLF represents implicit scenes using discrete volumes like
other voxel-based NeRF variants such as DVGO [39] and
Plenoxels [57]. However, these methods are memory-
intensive and slow in high-resolution (e.g., 1920×1080)

rendering due to dense voxel grids and global MLPs, com-
pared to SaLF with its more compact sparse representation,
efficient splatting, and octree-accelerated structure. We also
extend these voxel-like representations to rasterization.

Both SaLF and 3DGS perform efficient splatting through
sparse scene representations. But 3DGS does not sup-
port ray-based rendering directly because multiple Gaus-
sians can contribute to the same point when overlapped. In
contrast, SaLF defines distinct implicit functions for non-
overlapping regions, enabling straightforward ray-voxel in-
tersection and property evaluation. Furthermore, 3DGS of-
ten struggles with limited surface quality due to discon-
nected semi-transparent Gaussian primitives and often re-
quires significant regularization [7, 15], while SaLF can
leverage established NeRF techniques such as SDF for sur-
face reconstruction. The initialization and densification
strategies also differ: 3DGS requires sparse points as ini-
tialization and prunes, splits or clones existing Gaussians
to cover both spatial extent and fine details. In contrast,
SaLF is initialized coarsely yet densely, and its hierarchi-
cally subdividing voxels automatically capture fine details
while maintaining spatial coverage.

4. Self-driving Sensor Simulation with SaLF

SaLF’s efficient and versatile rendering capabilities are
particularly well-suited for self-driving sensor simulation,
which involves large scenes and dynamic actors, while de-
manding real-time rendering and multi-sensor support. We
now present how to utilize SaLF to construct a lightweight
simulator that achieves real-time rendering for camera and
LiDAR sensors.

4.1. Compositional Scene Representation
Dynamic Scene Modelling: Following previous work
[31], we model dynamic actors and backgrounds as distinct
bounding volumes that we compose into a global frame for
rendering. For dynamic actors, we initialize voxel sets by
partitioning each actor’s canonical bounding box. For ras-
terization, we use actor labels to transform these dynamic
voxels to the global coordinate system at each timestamp,
combine them with the static voxels, and project all voxels
to the image plane. For ray-casting, we construct a sep-
arate octree for each dynamic actor. We precompute ray-
box intersections between rays and the bounding boxes of
dynamic actors, sorting the entry and exit points by cam-
era distance. These precomputed intersections allow us to
determine the traversal order between the static scene’s oc-
tree and the dynamic actors’ octrees, enabling efficient ray
marching.

Multi-scale Static Scene Initialization: The outdoor
driving environment necessitates efficient representation of

large-scale scenes (e.g., sky, far-away buildings). Our ini-
tialization strategy begins by identifying a core region of
interest that the self-driving vehicle will traverse, which
we discretize at a base resolution. Recognizing that dis-
tant scene elements do not require high-resolution voxels,
we surround the core static foreground region with increas-
ingly coarser outer regions. These outer regions extend at
2×, 4×, 8×, and 16× the base volume, with their voxel
sizes scaling proportionally, naturally matching the dimin-
ishing detail requirements of distant scene elements. We
leverage LiDAR point clouds to optimize scene initializa-
tion through a three-step process: inner region voxel prun-
ing based on point absence, subdivision of point-containing
voxels, and high-opacity initialization for point-occupied
voxels. Please refer to the supp. for more details.

4.2. Learning
The scene representation is optimized through the following
loss function:

L = Lcolor + λ1Ldepth + λ2Lreg (7)

where Lcolor and Ldepth measure the `1 distance between
rendered and ground-truth images and LiDAR depth, re-
spectively. Lreg are regularization terms including enforcing
spatial consistency between adjacent voxels by maintaining
smooth SDF and color transitions and reduced opacity in
outer regions to facilitate subsequent pruning. Please refer
to the supp. for more details.

5. Experiments
5.1. Experimental Setup
Dataset and Evaluation Protocol: We evaluate our
method on the PandaSet dataset [49], which consists of 103
driving scenes captured at 1920× 1080 resolution, with 80
frames per scene and 360-degree LiDAR data. PandaSet
has diverse and complex urban scenes. Following previ-
ous works [42, 51], we use the same evaluation set contain-
ing 10 logs, with 40 frames for training and 40 frames for
evaluation per log. This 50%/50% split is more challenging
than the typical 90%/10% setting in other methods [18, 61].
We use even frames for training and odd frames for evalua-
tion. We report photorealism on the front camera via PSNR,
SSIM, and LPIPS (VGG-backbone [59]) metrics. For Li-
DAR evaluation, we measure the median distance error (L1)
between the predicted and ground-truth depth1. The train-
ing and rendering speed are reported on an RTX 3090 aver-
aged over the evaluation set.

Implementation Details of SaLF: We leverage the par-
allel computing framework Taichi [14, 41] to imple-
ment efficient rasterization and ray-casting operations. For

1NeuRAD [42] reports LPIPS(AlexNet) and median L2 LiDAR error.

training, we employ the Adam optimizer [19] with an ini-
tial learning rate of 0.01 and apply a decay factor of 0.8 ev-
ery 800 iterations, for a total of 3200 iterations. The maxi-
mum number of voxels allowed is 2.5 million. We also train
“SaLF (large),” with more voxels (5 million) and iterations
(4500) for better performance. Please see supp. for details.

Comparison with SoTA methods: We compare our ap-
proach against several SoTA methods in self-driving sen-
sor simulation including UniSim [52], NeuRAD [42] and
Street Gaussian [61]. UniSim leverages compositional neu-
ral feature fields to model dynamic scenes for controllable
camera and LiDAR simulation. NeuRAD further extends
it to handle more complex sensor phenomena (e.g., anti-
aliasing, rolling-shutter, ray-dropping). Street Gaussian re-
places NeRFs with compositional 3DGS and achieves real-
time camera simulation, but does not support LiDAR.

5.2. Fast and Realistic Multi-Sensor Simulation
Comparison to NeRF-based sensor simulation: We
compare SoTA sensor simulation approaches on PandaSet,
as shown in Tab. 1, our method achieves the best bal-
ance between rendering realism, rendering speed, and re-
construction time, while also supporting ray-based sensor
models. We achieve real-time rendering for both camera
and LiDAR with comparable fidelity to SoTA simulators,
and accelerate reconstruction speed by at least 5×. Neu-
RAD has slightly higher camera realism, as it leverages
a post-processing CNN, which provides additional model
capacity. We find that for NeuRAD without the CNN,
SaLF achieves similar camera realism, demonstrating that
the sparse voxel representation is as powerful as the NeRF-
based neural feature grids, while being faster. Please refer
to supp. for more details. Visual comparisons presented in
Fig. 6 show that SaLF achieves similar realism compared to
previous SOTA methods. We do note that the baselines have
better visual quality for dynamic actors, potentially due to
their actor pose optimization during training. For LiDAR,
SaLF only has 2.5cm higher median error compared to Neu-
RAD, while being 100× faster. Fig. 7 shows qualitatively
similar point clouds w.r.t. the ground-truth.

Comparison to 3DGS-based sensor simulation: As
shown in Fig. 9, our method can reconstruct distant re-
gions more accurately compared to Street Gaussian. This
is because Street Gaussian relies on sparse Structure-from-
Motion points and LiDAR for initialization, which does not
cover distant regions well. In contrast, our method’s multi-
scale initialization of coarse voxels provides more complete
coverage.

Efficiency Analysis: We analyze SaLF’s performance
characteristics across different operating conditions in

Table 1. Comparison to SoTA sensor simulation methods. Our approach achieves real-time (> 30 FPS) camera and LiDAR rendering,
and accelerates the reconstruction process by at least 5× while achieving comparable realism compared to baselines. Street Gaussian
leverages 3DGS and does not support LiDAR simulation (7). NeuRAD leverages NeRF and adopts additional CNN decoder for higher-
quality. Only compared with the best-performing methods and ignore the rest (e.g. NSG, vanilla iNGP and 3DGS) for brevity. We highlight

first , second , third .

Models
Rendering FPS ↑ Recon Time ↓ Rendering Realism

Camera LiDAR RTX-3090 hour PSNR↑ SSIM↑ LiDAR-L1↓

Street Gaussian [50] 115.5 7 2.26 25.65 0.777 7

UniSim [51] 1.3 11.8 1.67 25.63 0.745 0.100
NeuRAD [42] (2x) 1.7 3.79 3.48 26.60 0.770 0.085
SaLF (base) 54.5 640 0.31 25.48 0.744 0.142
SaLF (large) 34.3 430 0.48 25.78 0.762 0.111

Ground Truth UniSim Street Gaussian SaLF (ours)NeuRAD

Figure 6. Qualitative comparison on camera novel view synthesis. We achieve comparable photorealism compared to SoTA approaches.

Ground Truth SaLF (ours)NeuRAD

FPS 3.8 FPS 430

Figure 7. Qualitative comparison on LiDAR novel view syn-
thesis. Our method achieves comparable LiDAR rendering per-
formance compared to NeuRAD, while being 100× faster in ren-
dering.

Fig. 8. Our analysis reveals that at lower resolutions (be-
low 960 × 540), ray rendering significantly outperforms
rasterization due to the latter’s resolution-independent over-
head from projection and sorting operations. As resolu-
tion increases, rasterization becomes the more efficient ap-
proach, demonstrating the complementary nature and prac-

Figure 8. Efficiency analysis. Left: rendering speed comparison
of rasterization vs. ray rendering across resolutions. Right: trade-
off between rendering speed and realism.

tical value of supporting both rendering paradigms within a
single representation. We further analyze the relationship
between rendering efficiency and quality, finding a con-
sistent trade-off where higher FPS results in slight PSNR
reduction, enabling users to select optimal configurations
based on their application requirements.

Table 2. Ablation study on SaLF components.

Models PSNR↑ SSIM↑ LPIPS↓
Ours 25.48 0.744 0.373
− Densification 23.19 0.670 0.474
− Field matrices 25.11 0.735 0.386

Street Gaussian

SaLF (ours)

Figure 9. Comparison with StreetGaussian on distant regions.
Our method provides more accurate reconstructions for distant re-
gions (e.g. bridge) where LiDAR and SfM points are not sufficient.

Ablation Study: Two key aspects of SaLF are its local
implicit field representation as a matrix compared to a fixed
scalar value per voxel, and its adaptive voxel pruning and
densification during optimization. Tab. 2 reports the camera
realism results, demonstrating the value of both choices.

5.3. Applications and Extensions
Versatile rendering capabilities. To demonstrate our
method’s versatile rendering capabilities, we showcase sev-
eral key capabilities in Fig. 2. These include rolling shutter
LiDAR effects, ray-based light phenomena such as refrac-
tion and shadows of inserted objects, and panorama camera
images. These demonstrations highlight the versatility of
our approach in handling various sensor rendering tasks.

Rolling-shutter. In high-speed driving scenarios, the
temporal motion of the self-driving vehicle and other actors
during sensor capture can significantly impact perception
[27]. In Fig. 10, we demonstrate our method’s ability to ac-
curately simulate LiDAR and camera rolling-shutter effects,
a crucial capability for simulation.

Further extension. SaLF provides the foundation for a
performant data-driven multi-sensor renderer that can be
further built upon for downstream simulation, where addi-
tional features are needed. To demonstrate this, we show
initial demonstrations of extending SaLF to support addi-
tional LiDAR features such as raydrop and intensity simula-
tion, and multi-camera rendering for panorama image gen-
eration. For more details, please refer to the supp. We be-
lieve SaLF can further extend to support more sophisticated

Base

SaLF (global shutter) SaLF (rolling shutter)

Ground Truth SaLF (no rolling shutter) SaLF (rolling shutter)

Figure 10. Rolling-shutter simulation via efficient ray-based
rendering. Top: We render the same view using global shutter
and rolling-shutter camera models (see highlighted distorted re-
gion). Bottom: SaLF simulates rolling-shutter effect and accu-
rately match ground truth point clouds (see lidar sweep seam and
relative position for the dynamic actor in the highlighted region.)

features like beam-divergence, actor-label and sensor pose
refinement, providing exciting directions for future work for
the community.

5.4. Limitations
Our method typically requires a higher number of voxels
compared to 3DGS-based StreetGaussian to achieve com-
parable rendering quality. This stems from our voxels
having fixed size, position, and orientation, in contrast to
3DGS’s adaptive Gaussian primitives that can dynamically
adjust their shape to efficiently represent regions of similar
appearance. We also note that additional modifications are
required to support non-rigid and temporal changes in our
scene representation [6, 9]. While our method supports full
raytracing, and we demonstrate phenomena such as shadow
in Fig. 2, we train SaLF using primary rays only.

6. Conclusion
In this work, we tackled the problem of developing a multi-
sensor simulation system that is fast to train, realistic, and
efficient to render with. Towards this goal, we proposed
a novel representation, SaLF, which consists of a set of
sparse voxels, and where each voxel defines a local implicit
field. Importantly, we design our representation to sup-
port both rasterization and raycasting, enabling support of
ray-based phenomenon such as rolling-shutter, shadows and
refraction, as well as sensors with distorted lenses, which
was previously difficult to achieve with 3DGS. We enhance
SaLF for driving scenes via multi-scale voxel initialization,
adaptive pruning and densification, and dynamic actor mod-
elling. We demonstrated that SaLF achieves comparable Li-
DAR and camera realism to existing neural rendering sim-
ulation methods, while being much faster to train (up to
5×) and render with (over 100× for LiDAR), enabling more
scalable sensor simulation for autonomy development.

Acknowledgement
We thank the Waabi team for their valuable assistance and
support. Especially Rui Hu on the support of GPU program-
ming and Andrei Bârsan on the discussion and feedback on
the paper.

References
[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
anti-aliased neural radiance fields. In CVPR, 2022. 3

[2] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. TensoRF: Tensorial radiance fields. In ECCV, 2022.
3

[3] Qifeng Chen, Sheng Yang, Sicong Du, Tao Tang, Peng Chen,
and Yuchi Huo. LiDAR-GS: Real-time LiDAR re-simulation
using gaussian splatting. arXiv, 2024. 3

[4] Yurui Chen, Chun Gu, Junzhe Jiang, Xiatian Zhu, and Li
Zhang. Periodic vibration gaussian: Dynamic urban scene
reconstruction and real-time rendering. arXiv, 2023. 3

[5] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. MobileNeRF: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. arXiv, 2022. 1, 3

[6] Ziyu Chen, Jiawei Yang, Jiahui Huang, Riccardo de Lutio,
Janick Martinez Esturo, Boris Ivanovic, Or Litany, Zan Goj-
cic, Sanja Fidler, Marco Pavone, et al. OmniRe: Omni urban
scene reconstruction. arXiv, 2024. 3, 8

[7] Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin,
Yuexin Ma, Wenping Wang, and Xuejin Chen. Gaussianpro:
3D gaussian splatting with progressive propagation. arXiv,
2024. 5

[8] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. Carla: An open urban driving
simulator. Conference on robot learning, 2017. 3

[9] Tobias Fischer, Lorenzo Porzi, Samuel Rota Bulo, Marc
Pollefeys, and Peter Kontschieder. Multi-level neural scene
graphs for dynamic urban environments. In CVPR, 2024. 8

[10] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. FastNeRF: High-fidelity neural
rendering at 200fps. ICCV, 2021. 3

[11] Jianfei Guo, Nianchen Deng, Xinyang Li, Yeqi Bai, Bo-
tian Shi, Chiyu Wang, Chenjing Ding, Dongliang Wang, and
Yikang Li. Streetsurf: Extending multi-view implicit surface
reconstruction to street views. arXiv, 2023. 1, 4

[12] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In ICCV, 2021. 1,
3

[13] Georg Hess, Carl Lindström, Maryam Fatemi, Christoffer
Petersson, and Lennart Svensson. Splatad: Real-time li-
dar and camera rendering with 3d gaussian splatting for au-
tonomous driving. arXiv preprint arXiv:2411.16816, 2024.
3

[14] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan
Ragan-Kelley, and Frédo Durand. Taichi: a language

for high-performance computation on spatially sparse data
structures. TOG, 2019. 6

[15] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically ac-
curate radiance fields. In ACM SIGGRAPH 2024 Conference
Papers, 2024. 5

[16] Nan Huang, Xiaobao Wei, Wenzhao Zheng, Pengju An,
Ming Lu, Wei Zhan, Masayoshi Tomizuka, Kurt Keutzer,
and Shanghang Zhang. S3gaussian: Self-supervised street
gaussians for autonomous driving. arXiv, 2024. 3

[17] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D gaussian splatting for real-time
radiance field rendering. TOG, 2023. 2, 3

[18] Mustafa Khan, Hamidreza Fazlali, Dhruv Sharma, Tongtong
Cao, Dongfeng Bai, Yuan Ren, and Bingbing Liu. Autosplat:
Constrained gaussian splatting for autonomous driving scene
reconstruction. arXiv preprint arXiv:2407.02598, 2024. 6

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015. 6

[20] Juuso Korhonen, Goutham Rangu, Hamed R Tavakoli, and
Juho Kannala. Efficient NeRF optimization–not all samples
remain equally hard. arXiv, 2024. 3

[21] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Car-
oline Pantofaru, Leonidas J Guibas, Andrea Tagliasacchi,
Frank Dellaert, and Thomas Funkhouser. Panoptic neural
fields: A semantic object-aware neural scene representation.
In CVPR, 2022. 3

[22] Pou-Chun Kung, Xianling Zhang, Katherine A Skinner, and
Nikita Jaipuria. Lihi-gs: Lidar-supervised gaussian splat-
ting for highway driving scene reconstruction. arXiv preprint
arXiv:2412.15447, 2024. 3

[23] Zimu Liao, Siyan Chen, Rong Fu, Yi Wang, Zhongling
Su, Hao Luo, Li Ma, Linning Xu, Bo Dai, Hengjie
Li, et al. Fisheye-gs: Lightweight and extensible gaus-
sian splatting module for fisheye cameras. arXiv preprint
arXiv:2409.04751, 2024. 3

[24] Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai,
Hujun Bao, and Xiaowei Zhou. Efficient neural radiance
fields for interactive free-viewpoint video. In SIGGRAPH
Asia 2022 Conference Papers, 2022. 3

[25] Jeffrey Yunfan Liu, Yun Chen, Ze Yang, Jingkang Wang,
Sivabalan Manivasagam, and Raquel Urtasun. Real-time
neural rasterization for large scenes. In ICCV, 2023. 1, 3

[26] Alexander Mai, Peter Hedman, George Kopanas, Dor
Verbin, David Futschik, Qiangeng Xu, Falko Kuester,
Jonathan T Barron, and Yinda Zhang. Ever: Exact volumet-
ric ellipsoid rendering for real-time view synthesis. arXiv
preprint arXiv:2410.01804, 2024. 20

[27] Sivabalan Manivasagam, Ioan Andrei Bârsan, Jingkang
Wang, Ze Yang, and Raquel Urtasun. Towards zero domain
gap: A comprehensive study of realistic LiDAR simulation
for autonomy testing. In ICCV, 2023. 2, 8

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. ECCV, 2020. 1, 3

[29] Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Ric-
cardo de Lutio, Janick Martinez Esturo, Gavriel State, Sanja
Fidler, Nicholas Sharp, and Zan Gojcic. 3D gaussian ray
tracing: Fast tracing of particle scenes. In SIGGRAPH Asia
2024, 2024. 3

[30] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. 2022. 3

[31] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural scene graphs for dynamic scenes. CVPR,
2021. 1, 3, 5

[32] Ava Pun, Gary Sun, Jingkang Wang, Yun Chen, Ze Yang,
Sivabalan Manivasagam, Wei-Chiu Ma, and Raquel Urtasun.
Neural lighting simulation for urban scenes. In NeurIPS,
2023. 2

[33] Lukas Radl, Michael Steiner, Mathias Parger, Alexan-
der Weinrauch, Bernhard Kerbl, and Markus Steinberger.
Stopthepop: Sorted gaussian splatting for view-consistent
real-time rendering. ACM Transactions on Graphics (TOG),
43(4):1–17, 2024. 20

[34] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. KiloNeRF: Speeding up neural radiance fields with
thousands of tiny MLPs. ICCV, 2021. 3

[35] Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P.
Srinivasan, Ben Mildenhall, Andreas Geiger, Jonathan T.
Barron, and Peter Hedman. MERF: Memory-efficient radi-
ance fields for real-time view synthesis in unbounded scenes.
arXiv, 2023. 2, 3

[36] Yuan Ren, Guile Wu, Runhao Li, Zheyuan Yang, Yibo Liu,
Xingxin Chen, Tongtong Cao, and Bingbing Liu. Unigaus-
sian: Driving scene reconstruction from multiple camera
models via unified gaussian representations. arXiv preprint
arXiv:2411.15355, 2024. 3

[37] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish
Kapoor. Airsim: High-fidelity visual and physical simula-
tion for autonomous vehicles. In Field and service robotics,
2018. 3

[38] Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahen-
dra Kariya, Yanir Kleiman, Emilien Garreau, Oran Gafni,
Natalia Neverova, Andrea Vedaldi, Roman Shapovalov, et al.
Meta 3d assetgen: Text-to-mesh generation with high-
quality geometry, texture, and pbr materials. arXiv, 2024.
4

[39] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. CVPR, 2022. 3, 5

[40] Cheng Sun, Jaesung Choe, Charles Loop, Wei-Chiu Ma, and
Yu-Chiang Frank Wang. Sparse voxels rasterization: Real-
time high-fidelity radiance field rendering. arXiv preprint
arXiv:2412.04459, 2024. 3, 20

[41] Kuangyuan Sun. Taichi 3D Gaussian Splatting, 2023. 6, 12
[42] Adam Tonderski, Carl Lindström, Georg Hess, William

Ljungbergh, Lennart Svensson, and Christoffer Petersson.
NeuRAD: Neural rendering for autonomous driving. In
CVPR, 2024. 1, 3, 4, 6, 7, 15

[43] Haithem Turki, Jason Y Zhang, Francesco Ferroni, and Deva
Ramanan. Suds: Scalable urban dynamic scenes. In CVPR,
2023. 1, 3

[44] Zian Wang, Wenzheng Chen, David Acuna, Jan Kautz, and
Sanja Fidler. Neural light field estimation for street scenes
with differentiable virtual object insertion. ECCV, 2022. 2

[45] Waymo. Meet the 6th generation waymo driver, 2024. 1
[46] Hanfeng Wu, Xingxing Zuo, Stefan Leutenegger, Or Litany,

Konrad Schindler, and Shengyu Huang. Dynamic lidar re-
simulation using compositional neural fields. In CVPR,
2024. 3

[47] Qi Wu, Janick Martinez Esturo, Ashkan Mirzaei, Nicolas
Moenne-Loccoz, and Zan Gojcic. 3dgut: Enabling distorted
cameras and secondary rays in gaussian splatting. arXiv
preprint arXiv:2412.12507, 2024. 3

[48] Zirui Wu, Tianyu Liu, Liyi Luo, Zhide Zhong, Jianteng
Chen, Hongmin Xiao, Chao Hou, Haozhe Lou, Yuantao
Chen, Runyi Yang, et al. MARS: An instance-aware, mod-
ular and realistic simulator for autonomous driving. arXiv,
2023. 1

[49] Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang,
Xiaolin Chai, Judy Jiao, Zesong Li, Jian Wu, Kai Sun, Kun
Jiang, et al. Pandaset: Advanced sensor suite dataset for
autonomous driving. In ITSC, 2021. 6

[50] Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang,
Haiyang Sun, Kun Zhan, Xianpeng Lang, Xiaowei Zhou,
and Sida Peng. Street gaussians for modeling dynamic ur-
ban scenes. arXiv, 2024. 2, 3, 7, 15

[51] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Mani-
vasagam, Wei-Chiu Ma, Anqi Joyce Yang, and Raquel Ur-
tasun. Unisim: A neural closed-loop sensor simulator. In
CVPR, 2023. 1, 3, 4, 6, 7, 15

[52] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Mani-
vasagam, Wei-Chiu Ma, Anqi Joyce Yang, and Raquel Ur-
tasun. Unisim: A neural closed-loop sensor simulator. In
CVPR, 2023. 6

[53] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. NeurIPS, 2021.
4

[54] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,
and Ben Mildenhall. BakedSDF: Meshing neural SDFs for
real-time view synthesis. arXiv, 2023. 1, 3

[55] Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi
Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, and Xinggang
Wang. GaussianDreamer: Fast generation from text to 3D
gaussians by bridging 2D and 3D diffusion models. In
CVPR, 2024. 3

[56] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. ICCV, 2021. 2, 3

[57] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. CVPR, 2022. 3, 5

[58] Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao,
Kalyan Sunkavalli, and Zexiang Xu. GS-LRM: Large recon-
struction model for 3D gaussian splatting. In ECCV, 2025.
3

[59] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. CVPR, 2018. 6

[60] Chenxu Zhou, Lvchang Fu, Sida Peng, Yunzhi Yan, Zhanhua
Zhang, Yong Chen, Jiazhi Xia, and Xiaowei Zhou. Lidar-rt:
Gaussian-based ray tracing for dynamic lidar re-simulation.
arXiv preprint arXiv:2412.15199, 2024. 3

[61] Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang,
Deqing Sun, and Ming-Hsuan Yang. DrivingGaussian:
Composite gaussian splatting for surrounding dynamic au-
tonomous driving scenes. In CVPR, 2024. 2, 3, 6

3D Gaussian Splatting SaLF
Parameters
Center µ ∈ R3 p ∈ R3 (not learnable)
Rotation q ∈ R4 (quaternion) q ∈ R4 (quaternion, not learnable)
Scale s ∈ R3 (anisotropic) s ∈ R (not learnable)
Opacity/density α ∈ R (direct opacity) Wσ ∈ R1×4 (density field)
Appearance SH coefficients for color Wc ∈ R3×3 (color field) + Wsh ∈ R3×4 (SH)
Opacity Computation
Computation α · exp(− 1

2x
TΣ′−1x) α = 1− exp(−σδ)

Input
- α: learned opacity
- x: 2D offset from projected center
- Σ′: projected covariance

- σ = exp(Wσx
T): density from field

- δ: ray-voxel intersected segment
- x: intersected midpoint

Dependency Varies with distance from gaussian center Varies with ray-voxel intersected point and length
Color Computation
Base Formula c = SH(γ(ω)) c = sigmoid(Wcx

T +Wshγ(ω))

Inputs
- γ(ω): encoded viewdir
- SH: spherical harmonic coefficients

- x: local coordinates
- γ(ω): encoded viewdir

Structure Single SH evaluation Combines local color field + SH
Initialization and Densification
Initialization Strategy Start from sparse points Dense coarse voxel grid

Densification Criteria
- Large position gradients
- View-space gradient magnitude
- Size of Gaussians

Color field gradients

Densification Operations
- Clone: copy Gaussian and move along gradient
- Split: divide large Gaussians with reduced scale Split into 8 children

Pruning Strategy Remove low opacity Gaussians Remove low opacity voxels

Table 3. Comparison between 3DGS and SaLF.

Appendix
In this appendix, we provide the implementation details of our method and the baselines, additional qualitative results and

more discussions of limitations of SaLF. We first describe the implementation details of our approach in Sec. A and baselines
in Sec. B. We further showcase additional qualitative examples in Sec. C. Finally, we analyze the limitations of our model
and discuss the future works in Sec. D.

A. SaLF Details
Implementation Details for Tile-based Rasterization and comparison to 3DGS: For the tile-based rasterization, our
implementation is built on taichi-gaussian-splatting [41]. The key implementation difference between 3DGS and SaLF lies
in their opacity computation mechanisms. In 3DGS, opacity is computed using a gaussian function based on the distance
between each 2D pixel and the projected gaussian center. In contrast, SaLF converts each pixel into a 3D ray and computes
ray-voxel intersections to obtain the traversal distance (interval δ) and midpoint. The density is then computed using this
midpoint, and opacity is derived using main paper Equation (4). Our rasterization speed matches the original 3DGS when
handling a similar number of voxels. However, SaLF typically requires more voxels to achieve comparable rendering quality,
which impacts overall rendering speed. This difference arises because 3DGS can fit scenes more efficiently with fewer
gaussians due to its additional learnable parameters (rotation, scale, center) that adapt to scene complexity. In contrast,
SaLF uses predefined static size, position, and orientation parameters, necessitating more voxels for high-fidelity scene
representation. Additionally, while we maintain a dense coarser voxel grid for distant regions that contains relatively few
voxels, each of these voxels has a larger size. This results in more projected voxels per tile during rasterization, affecting
performance. We compare the difference between SaLF and 3DGS in Tab. 3.

Implementation Details for Ray-casting Octree-based ray marching combines hierarchical space partitioning with effi-
cient memory layout for fast volume rendering. This includes two aspects: the linear octree storage format and the hier-
archical ray marching algorithm. The algorithms boxes below outline the core components of octree-based ray marching.

Algorithm 1 Octree-based Ray Marching

Require: Ray origin o, direction d, octree buffer B
Ensure: Final color and opacity (Cout, αout)

1: Initialize αaccumulated = 0, Cout = 0, ε = 1e−4

2: Initialize current pos← o
3: while αaccumulated < 0.99 and ray in volume do
4: node← QueryOctree(B, current pos)
5: if node.is empty then
6: texit ← ComputeExitDist(current pos, d, voxel bounds) . Ray-node intersection
7: current pos← current pos + (texit + ε)d . Small offset ε to go out of current voxel
8: else
9: (Cvoxel, αvoxel)← GetVoxelData(node.id) . compute color and opacity

10: Cout ← Cout + (1− αaccumulated)Cvoxelαvoxel
11: αaccumulated ← αaccumulated + (1− αaccumulated)αvoxel
12: texit ← ComputeExitDist(current pos, d, voxel bounds)
13: current pos← current pos + (texit + ε)d
14: end if
15: end while
16: return (Cout, αaccumulated)

Algorithm 2 Linear Octree Buffer Representation

Require: Input voxel data with positions and values
Ensure: Linear buffer B storing octree nodes

1: B[0]← root node . Each node stores (id or offset, is leaf)
2: for each node do
3: if node is empty then
4: Store (−1,−1) . Empty node
5: else if node has children then
6: Store (offset, 0) . offset points to 8 children block
7: Store 8 children in consecutive memory at offset
8: else
9: Store (voxel id, 1) . Leaf node with actual data

10: end if
11: end for
12: return B

Algorithm 3 QueryOctree

Require: Octree buffer B, position p
Ensure: Leaf node information

1: node idx← 0 . Start from root
2: while node← B[node idx] is not leaf do
3: if node.offset = −1 then
4: return EmptyNode
5: end if
6: child idx← ComputeChildIndex(p) . Based on octant position
7: node idx← node.offset+ child idx
8: end while
9: return node

Algorithm 2 describes the linear octree buffer structure, which enables efficient memory access. Algorithm 1 shows the main
ray marching process, which efficiently skips empty space. Algorithms 3 and 4 detail the octree traversal mechanics.

Algorithm 4 ComputeChildIndex

Require: Position p in current node’s local space
Ensure: Child index in range [0,7]

1: offset← p ≥ 0.5 . Binary vector for each axis
2: return offset.x+ 2(offset.y + 2(offset.z)) . Convert to linear index

Initialization and Adaptive Densification: We first obtain an Axis-Aligned Bounding Box (AABB) that encompasses all
actor trajectories in the world coordinate frame. We extend this boundary by 10m upward, 5m downward, and 40m laterally
to define an inner region that typically contains dense LiDAR coverage. We partition this inner region into 1-meter voxels and
extend it hierarchically by factors of 2x, 4x, 8x, and 16x to create outer regions, with voxel sizes scaled proportionally. To
optimize the scene initialization, we leverage the aggregated static LiDAR point cloud data through a two-step process: first
pruning voxels in the inner region that contain no LiDAR points, then subdividing voxels containing LiDAR points, thereby
creating a multi-scale scene representation. For parameter initialization, voxels containing at least one LiDAR point are
assigned high opacity values by setting parameter a in Equation (6) to 2.0, while voxels without LiDAR points are initialized
with a = 0.1. Parameter b is initialized to 0.2 across all voxels. The learnable parameters (SDF Field, RGB Field, Spherical
Harmonics) are randomly initialized using PyTorch’s default settings in nn.Linear. The adaptive splitting and pruning
process maintains a budget of M total voxels, with N voxels at the current step. We first prune Nprune voxels whose opacity
remains below 0.005. We then use accumulated training gradients as a measure of local geometric complexity to identify the
top (M +Nprune−N)/(8× 5) voxels for splitting. The factor of 8 accounts for subdivision into sub-voxels, while the factor
of 5 ensures gradual splitting to prevent premature budget allocation. Upon splitting, all eight sub-voxels inherit identical
color and geometry fields from their parent voxel.

Training: Our loss formulation comprises of an L1 color loss (weight: 1.0) and an L1 depth loss (weight: 10.0), along
with regularization terms. Our regularization framework consists of multiple weighted loss terms, all utilizing the L1 norm.
The Eikonal loss (weight: 0.1) enforces the SDF field property by constraining the norm of the first three Ws components to
unity (for f = ax + by + cz + d, ensuring a2 + b2 + c2 = 1). The smoothness loss (weight: 3.0) minimizes the difference
between color and geometry fields of neighboring voxel pairs along their shared plane. For opacity regularization (weight:
10.0), we enforce opacity values close to 1 for LiDAR points by computing opacity at 20cm traversal distance using queried
SDF values. The empty space loss (weight: 0.1) encourages the lowest 20% of voxel opacity values in the outer region to
approach 0 at maximum traversal distance.

Implementation Details for Applications: For panoramic visualization, we first train our model using all 6 cameras and
then render 360◦ views through ray-casting. Rolling shutter and motion blur effects occur when the sensor is moving with
respect to parts of the scene. We simulate those by computing individual per-ray origin points based on the sensor’s velocity
and the exact timestamp when each ray of the sensor is registered. We also interpolate the poses of dynamic objects according
to the individual ray timestamps. Our method’s ability to cast individual camera rays also allows us to inject new objects
into the scene with reflections, refraction, and shadows. For the glass sphere demo, we cast additional refracted and reflected
rays, then blend their contributions according to the Fresnel formula. The scene lighting present in the training images is
baked into our representation and disentangling lighting from surface material parameters is outside the scope of this paper.
Nevertheless, we are able to simulate a shadow of a synthetically injected object if we assume that most of the light comes
from the sun located high above the scene. For the shadow demo, we first use the per-ray depth to determine the 3D position
of the scene surface. If the shadow ray cast from the surface to the sun intersects the injected object, we darken the original
output color. Please note that the injected spheres in the demonstrations are not themselves represented using SaLF, but
instead we solve the ray-sphere intersection equation. The SaLF-represented scene itself is not reflective, as estimating the
material properties is outside the scope of this paper.

Efficiency Analysis. For the efficiency-resolution analysis, we evaluate the SaLF-base model (with 2.2 million voxels)
on log 001. The ray-rendering throughput remains relatively consistent across resolutions, with only slight reduction at
lower resolutions due to the fixed overhead of preprocessing dynamic objects. In contrast, rasterization throughput decreases
more significantly at lower resolutions because operations like projection and sorting incur resolution-independent overhead,
becoming proportionally more expensive for smaller images. For the efficiency-realism analysis, we evaluate log 001 with

varying model capacities (1.2, 1.6, 2.2, 3.0, 3.8, 4.7, 6.2, 8.2, 10.7 million voxels) to measure the quality-performance
tradeoff.

Storage and Memory. SaLF-big requires 807MB of disk storage, comparable to StreetGaussian (760MB). SaLF’s sparse
multi-scale voxel approach provides better memory efficiency than dense single-scale methods like Plenoxels (which use
sparse features but still require dense grids for indexing). Despite using different primitive types, SaLF and StreetGaussian
have similar parameter counts (181M vs. 192M).

Hardware Performance. On an RTX-3090 rendering 1080P images, SaLF-large achieves 16.7 FPS with 1.6GB memory
using ray-tracing (approximately 10× faster than NeRF-based approaches due to our accelerated structure), and 34.3 FPS
with 3.1GB memory using rasterization. Interestingly, on newer hardware NVIDIA L40S, ray-tracing actually outperforms
rasterization (61.6 FPS vs. 47.9 FPS). This performance inversion likely results from the L40S having superior compute
capabilities but lower memory bandwidth compared to the 3090. Rasterization is more memory-bound due to operations like
tile creation, culling, duplication, and sorting, while our ray-tracing implementation benefits from kernel fusion that fully
utilizes compute resources.

B. Baseline Implementation Details
UniSim [51]: UniSim is a state-of-the-art (SoTA) neural sensor simulator which builds modifiable digital twins with com-
positional neural radiance fields. It achieves SoTA novel view synthesis and simulation performance in both camera and
LiDAR simulation and has been applied in closed-loop evaluation. We follow the same evaluation setting as [51] and copy
the numbers from the original paper. We note that UniSim [51] speed numbers are measured on RTX-A5000, which is
approximately 1.2x slower than RTX-3090 used in this paper.

NeuRAD [42]: NeuRAD extends UniSim to handle more complex sensor phenonmena (e.g., rolling-shutter, ray-dropping
and beam divergence) and achieves superior performance in camera and LiDAR simulation with 2× training time. We adopt
the public implementation1the continuously improving version in the codebase. For NeuRAD w/o CNN comparison, we
replace the CNN decoder with a three-layer MLP with ReLU activation. Note that we have some minor difference compared
to NeuRAD in the settings and evaluation metric. First, we split data in odd/even frames for training/validation (0,2,4,...76,78)
VS (1,3,9,....,77,79), while NeuRAD has slightly difference for the last frame (0,2,4,...,76, 79) VS (1,3,5,...,77, 78). Second,
we use LPIPS with VGG backbone for camera evaluation, while NeuRAD uses AlexNet backbone. Third, we use median
L1 LiDAR error (m) for evaluation, while NeuRAD uses median L2 LiDAR error (m2). So we rerun the evaluation with the
same settings.

Street Gaussian [50]: Street Gaussian replaces NeRFs in UniSim or NeuRAD with compositional 3DGS and achieves real-
time camera simulation, but does not support LiDAR. We adopt the public implementation2 and train the models for 30,000
iterations with the default hyperparameters (e.g., density control, learning rate schedule). We use 800,000 downsampled
aggregated LiDAR points and random 200,000 points for the initialization of 3D Gaussians.

C. Additional Experiments
C.1. Representation Comparison
We further analyze the performance differences between different representation approaches for multi-sensor rendering.
Table 4 compares our SaLF (large) with NeuRAD (without CNN post-processing) and Street Gaussian to isolate the impact
of the underlying representations rather than additional enhancements. This comparison highlights the trade-offs between
different scene representations in terms of rendering efficiency, reconstruction time, and rendering quality.

As shown in Table 4, SaLF offers significant advantages in reconstruction time (7.1× faster than NeuRAD and 4.7× faster
than Street Gaussian) while maintaining competitive rendering realism. For camera rendering speed, SaLF falls between
the highly efficient Street Gaussian and the slower NeRF-based NeuRAD, while providing LiDAR simulation capabilities
that Street Gaussian lacks. This analysis demonstrates that our sparse voxel-based representation with local implicit fields
effectively bridges the gap between explicit particle-based methods (3DGS) and pure implicit field approaches (NeRF).

1https://github.com/georghess/neurad-studio
2https://github.com/ziyc/drivestudio

https://github.com/georghess/neurad-studio
https://github.com/ziyc/drivestudio

Table 4. Comparison of different scene representations for multi-sensor rendering.

Models Rendering FPS ↑ Recon Time ↓ Rendering Realism
Camera LiDAR RTX-3090 hour PSNR↑ SSIM↑ LiDAR-L1↓

Street Gaussian 115.5 7 2.26 25.65 0.777 7
NeuRAD (w/o CNN) 0.2 3.80 3.42 25.64 0.719 0.090
SaLF (large) 34.3 430 0.48 25.78 0.762 0.111

Models Intensity Raydrop Acc Speed (fps)

SaLF-large 0.069 92.7 350
NeuRAD 0.062 96.2 3.79
UniSim 0.085 91.0 11.8

Table 5. Extension SaLF for LiDAR Raydrop and intensity.

Models PSNR SSIM LPIPS

StreetGS 24.73 0.745 0.314
NeuRAD(w/ CNN) 25.80 0.753 0.250
UniSim 23.12 0.682 0.360
SaLF-large 24.80 0.732 0.351

Models FID

NeuRAD w/ CNN 29.52
NeuRAD w/o CNN 40.84
StreetGS 37.92
SaLF-large 41.22

Table 6. Multi-camera performance and extrapolation.

C.2. Extension for LiDAR raydrop and intensity
For more LiDAR feature like raydrop and intensity simulation, we extend SaLF with a 8-channel feature for each voxel. The
alpha-blended feature, along with depth and viewdir, is converted to intensity and raydrop probability with a linear layer.
Preliminary results show SaLF has reasonable performance while being significantly faster (Tab. 5). We also extended SaLF
to support multi-camera rendering, which can then be used to generate panorama images. More sophisticated features like
beam-divergence, actor-label refinement and multi-sensor calibration can be built on top of SaLF for various applications
scenarios, which we leave for future work.

C.3. Evaluation for multi-cameras and extrapolation
Multi-camera reconstruction in Pandaset presents challenges due to significant exposure differences across cameras. To
address this issue, we implement per-camera spherical harmonics while maintaining shared geometry information. Table 6
presents our preliminary results, which demonstrate performance comparable to StreetGaussian, though still behind NeuRAD
with its CNN-enhanced capacity. Future work could incorporate more sophisticated modeling approaches, including exposure
correction and camera calibration, to further enhance performance. We also evaluate extrapolation performance by displacing
the camera±2m along the XY-axis and computing the FID between rendered and source images. As shown in Table 6, SaLF
and StreetGS achieve similar extrapolation quality, while NeuRAD demonstrates greater robustness due to its CNN post-
processing.

C.4. Additional Qualitative Results
Our method achieves the best balance between rendering realism, rendering speed, and reconstruction time, while also
supporting ray-based sensor models. As shown in Fig. 11 and 12, we achieve real-time rendering for both camera and
LiDAR with comparable fidelity to SoTA simulators on a wide variety of driving scenarios.

C.5. Additional Examples for Controllable Simulation
We further showcase the capacities of SaLF in controllable simulation. In Fig. 13, we show examples of removing all dynamic
actors seamlessly from the original scenes. In Fig. 14, we show high-fidelity simulation examples of SDV manipulation by
moving the front camera left or right. These results demonstrate SaLF has comparable realism and capacities as SoTA

Figure 11. Additional qualitative comparison on camera novel view synthesis.

Ground Truth SaLF (ours)NeuRAD

FPS 3.8 FPS 430

Figure 12. Additional qualitative comparison on LiDAR novel view synthesis.

self-driving multi-modal sensor simulators (e.g., UniSim, NeuRAD) while improving efficiency, enabling more scalable
simulation.

C.6. Additional Examples for Complex Sensor Modelling and Secondary Effects
We provide additional examples of ray-based rendering which 3DGS does not support directly in Fig. 15, 16 and 17. In
Fig. 15, we show an example of simulating ray-tracing based effects including refraction/reflection (with variable index of
refraction) and shadows. In Fig. 16, we simulate a fish-eye camera with different distortion parameters. In Fig. 17, we provide

Original (Sim)

Actor Removal

Figure 13. Controllable simulation: actor removal.

Figure 14. Controllable simulation: SDV manipulation.

additional examples of simulating rolling-shutter effects for both camera and LiDAR.

C.7. Surface Normal Visualization

Figure 18 demonstrates surface rendering for SaLF where we show surface normal visualization from our SaLF representa-
tion. SaLF maintains smooth, continuous surface transitions through its effective SDF representation. More regularization
can be applied to further improve surface consistency, particularly in regions with complex geometry or sparse training views.

Variable index of refraction (IOR)

Figure 15. Simulating ray-tracing based effects.

Figure 16. Simulating distorted fish-eye cameras.

Rolling shutter with different actor speed

Rolling shutter with different SDV speed

Rolling shutter with different SDV speed

Figure 17. Simulating rolling-shutter LiDAR and camera.

Figure 18. Rendered Surface Normal.

D. Discussions

D.1. Sorting Ambiguities in Rasterization
In voxel-based rasterization, a potential issue arises when determining front-to-back ordering. When sorting voxels by their
center distances to the camera, a voxel whose center is farther away might have its front edge or corner positioned closer
to the camera than another voxel with a nearer center. This sorting ambiguity could theoretically lead to incorrect alpha
compositing and visual artifacts, particularly concerning for physically-based sensor simulation. Contrary to expectation, our
analysis shows this issue has minimal practical impact for two key reasons. First, the volume rendering equation inherently
mitigates the problem: when a ray intersects an edge or corner of a voxel, the small traversal distance (δ) results in a negligible
opacity contribution (α = 1 − exp(−σδ)), regardless of density values. This effectively downweights contributions from
potentially ambiguous intersections. Second, SaLF’s adaptive densification process tends to produce nearby voxels of similar
sizes, further reducing sorting ambiguities. During coarse-to-fine optimization, voxels exhibiting similar color field gradients
in proximity undergo comparable levels of subdivision. With similarly-sized neighboring voxels, the maximum possible
distance between a voxel’s center and its boundary becomes more constrained. This significantly reduces cases where a
farther voxel’s corner could extend substantially in front of a nearer voxel’s boundary, making center-based sorting a better
approximation of the correct front-to-back order. Our quantitative comparison between images by rasterization (using center-
based sorting) and ray-casting (with correct traversal ordering) confirms this effect, showing an average L1 difference of
only 0.013 — considerably smaller than the minimum distinguishable difference in 8-bit color (1/256 ≈ 0.0039). This
demonstrates that potential artifacts from sorting ambiguities remain mostly imperceptible and below numerical precision
thresholds. It is worth noting that this sorting ambiguity is not unique to our voxel-based approach, but is a common issue in
all splatting-based methods with spatially-extended primitives [26, 33, 40].

D.2. Artifacts and potential enhancements
In Fig. 19, we show some artifacts of our method. For dynamic actors such as vehicles and pedestrians, our method produces
lower visual quality compared to baselines, likely due to their explicit actor pose optimization during training, which can
be added to SaLF as well. Our method also struggles with very strong view-dependent effects, which may need higher
resolution voxels and more spherical harmonics to capture. Additionally, we observe occasional transparency artifacts in our
renderings, which might be addressed by implementing more robust near-surface rendering techniques. Finally, our current
implementation has difficulty accurately representing fine geometric details, such as individual tree leaves, due to the inherent
resolution limitations of our voxel-based representation and noisy data.

Blurry Dynamic Actors View-dependent Artifacts Transparent Background Limited Fine-grained Details

Figure 19. Artifacts.

D.3. Limitations
As discussed in Appendix A, alimitation of SaLF is the requirement for a significantly higher number of voxels compared to
3DGS-based Street Gaussian to achieve comparable rendering quality, which impacts the overall rendering performance. Ad-
ditionally, our choice of using axis-aligned, non-overlapping voxels, while efficient for sensor simulation, presents challenges
for generalizable scene reconstruction from images. Unlike methods that predicts a set of 3D Gaussians, which can flexibly
adapt their orientation and overlap to match scene geometry, our sparse set of non-overlapping and axis-aligned voxels with
fixed resolutions enforces strict spatial constraints that may be difficut to adhere to during generation. These limitations
highlight potential directions for future improvements in our approach.

D.4. Future Work
While we demonstrate SaLF’s effectiveness in autonomous driving sensor simulation, our representation has potential for
other applications such as virtual reality. Multi-scale voxel representation in SaLF aligns perfectly with level-of-detail
rendering techniques, similar to MipMap structures, enabling efficient rendering across varying distances and viewpoints.
Moreover, the local nature of our representation enables efficient streaming and management of large-scale scenes, similar to
open-world video games, where content can be dynamically loaded based on camera position and scene importance. These
extensions would maintain SaLF’s core advantages of efficiency and flexibility while broadening its impact.

D.5. Broader Impact and Data Privacy
We evaluate SaLF on the PandaSet dataset, which contains 2D/3D sensor data from real-world driving scenes. This dataset
has been properly vetted for ethical considerations in data collection and usage. While the dataset includes street scenes with
pedestrians, it contains no personally identifiable information or sensitive content.

SaLF advances autonomous vehicle development by enabling efficient, realistic, and real-time sensor simulation. Its ability
to accurately simulate various sensor effects (e.g., rolling shutter, refraction) and support interactive scene manipulation can
significantly improve the testing and validation of autonomous systems.

	Introduction
	Related Work
	SaLF Sparse Local Fields
	Representation
	Efficient Rendering of SaLF
	Initialization and Densification
	Comparison with 3DGS and NeRF

	Self-driving Sensor Simulation with SaLF
	Compositional Scene Representation
	Learning

	Experiments
	Experimental Setup
	Fast and Realistic Multi-Sensor Simulation
	Applications and Extensions
	Limitations

	Conclusion
	SaLF Details
	Baseline Implementation Details
	Additional Experiments
	Representation Comparison
	Extension for LiDAR raydrop and intensity
	Evaluation for multi-cameras and extrapolation
	Additional Qualitative Results
	Additional Examples for Controllable Simulation
	Additional Examples for Complex Sensor Modelling and Secondary Effects
	Surface Normal Visualization

	Discussions
	Sorting Ambiguities in Rasterization
	Artifacts and potential enhancements
	Limitations
	Future Work
	Broader Impact and Data Privacy

