
MIXSIM: A Hierarchical Framework for Mixed Reality Traffic Simulation

Supplementary Materials

Abstract

We present additional results and analyses (Appendix A),

MIXSIM implementation details (Appendix B), and experi-

ment details (Appendix C). We also attach a video that pro-

vides a brief outline of MIXSIM and additional qualitative

results. See supplementary_video.mp4.

A. Additional Results

A.1. Comparison to Motion Forecasting Models

Motion forecasting is a related field that also requires ac-

curate modeling of human driving behaviors. As such, we

compare MIXSIM against state-of-the-art motion forecast-

ing models on their ability to reconstruct a given scenario

when re-simulating all interactive agents, mirroring the re-

alism analysis presented in the main paper. In particular,

we compare against our implementations of MTP [4], Mul-

tiPath [2], LaneGCN [10], and GoRela [3]. These mod-

els output multi-modal waypoint trajectories. Therefore, at

each step of the simulation, we use each agent’s highest

scoring trajectory to determine which waypoint the agent

will arrive at next.

Tab. 1 summarizes the results of our experiment on AV2.

We observe that all motion forecasting models perform sig-

nificantly worse than MIXSIM, particularly on reconstruc-

tion metrics. This result can be explained by: (1) these mod-

els cannot condition on ground truth paths; and (2) like BC,

these models are trained in open-loop and suffer from sig-

nificant covariate shift when deployed in closed-loop sim-

ulation. These conclusions are especially evident consider-

ing the fact that MIXSIM share a similar architecture with

GoRela [3], differing only in terms of our training method-

ology (i.e., closed-loop training) and controllability (i.e.,

route-based hierarchy). This demonstrates the importance

of these design choices for mixed reality traffic simulation.

A.2. Ablation Study

We conduct an ablation study of the two most promi-

nent design choices in MIXSIM: (1) the route-based hier-

archy (and its associated route-conditional policy); and (2)

closed-loop training with an imitation objective. We have

already partly demonstrated their significance via a com-

parison against the BC and IL baselines in the main paper.

Here, we complete the picture by introducing an additional

method: BC-Route. Concretely, BC-Route uses an iden-

tical architecture as MIXSIM (including our HeteroGNN

based route-conditional policy decoder) and uses the same

reconstructed route for reactive re-simulation. The only dis-

tinction is training methodology, where BC-Route is trained

using one-step behavior cloning similar to BC.

Tab. 2 shows clear evidence that both route-conditioning

and closed-loop training are critical for simulation perfor-

mance. Notably, route-conditioning alone can significantly

reduce compounding error, approximately halving recon-

struction error and collision rate and preventing agents from

driving off road in most situations. However, it remains crit-

ical to optimize the imitation objective on unrolled simula-

tion states instead of one-step actions to further reduce the

sim2real gap.

A.3. Reconstruction Error Across Time

In Figs. 2 to 3, we plot reconstruction metrics across time

for HIGHWAY. As discussed in the main paper, MIXSIM

achieves the best displacement error and along track error of

the competing methods—a result that holds across all time

steps. Unsurprisingly, the path-following baselines achieve

the lowest cross track error since they constrain agents to

follow their original paths. We note, however, that these

baselines do not achieve zero cross track error since: (1)

they fallback to their base model for steering control after

fully traversing their original paths; and (2) they do not fol-

low the agents’ original trajectories exactly but instead plan

against smooth driving paths built from the original tra-

jectories (see Appendix C.1). Due to differences between

the driving paths and the original trajectories, we observe

that the path-following baselines exhibit slightly lower cross

track error in the middle of a simulation than at the begin-

ning or the end.

In Figs. 4 to 5, we show similar results hold in the urban

domain of AV2. Notably, MIXSIM outperforms all base-

lines in all three reconstruction metrics, including against

path-following baselines on cross track error! We attribute

Reconstruction Distribution JSD Common Sense

Method Ref. Path FDE ATE CTE Speed Accel. Lead Dist. Nearest Dist. Collision Off Road

MTP [4] 13.88 13.54 1.21 0.21 0.28 0.04 0.06 1.40 2.12

MultiPath [2] 11.96 11.52 1.28 0.17 0.30 0.04 0.05 1.27 2.19

LaneGCN [10] 11.91 10.10 3.74 0.16 0.18 0.06 0.10 2.43 17.71

GoRela [3] 11.54 10.23 2.75 0.12 0.19 0.05 0.04 1.06 3.85

MIXSIM ✓ 5.04 4.86 0.67 0.04 0.33 0.03 0.03 1.07 1.29

Table 1. Sim2real domain gap results on AV2: Ref. Path means method condition on s0:T , otherwise only s0.

Ablation Reconstruction Distribution JSD Common Sense

Method Route-cond. CLT FDE ATE CTE Speed Accel. Lead Dist. Nearest Dist. Collision Off Road

BC 26.10 17.00 15.60 0.11 0.32 0.18 0.08 11.40 61.60

BC-Route ✓ 16.40 14.80 4.27 0.09 0.11 0.10 0.05 5.31 0.32

IL ✓ 11.10 10.90 1.05 0.10 0.11 0.05 0.03 1.49 0.00

MIXSIM ✓ ✓ 10.30 10.30 0.25 0.09 0.10 0.04 0.03 0.86 0.00

Table 2. Sim2real domain gap results on HIGHWAY: Our route-conditional policy decoder (Route-cond.) and closed-loop training (CLT)

are critical to achieving good simulation performance.

Finds Safety Critical Variation Breakdown

MIXSIM BICYCLE BICYCLE-F # Runs % Runs

190 47.50

✓ 26 6.50

✓ 27 6.75

✓ ✓ 51 12.75

✓ 5 1.25

✓ ✓ 5 1.25

✓ ✓ 4 1.00

✓ ✓ ✓ 92 23.00

Table 3. Breakdown of 400 optimization runs to find safety critical

variations on HIGHWAY-ADVERSARIAL. We report the number

and percentage of runs for which a subset of the methods find a

safety critical variation.

this advantage to using soft conditioning on the ground truth

route instead of hard constraints on the driving path built

from the original trajectory. This enables MIXSIM to be

more robust to noise in the original trajectory (and also

noise introduced by the driving path optimization). An-

other notable observation is that BC outperforms Heuristic

in AV2 (but not in HIGHWAY). We attribute this to two

main differences: (1) AV2 has more complex map topol-

ogy, which is more difficult to handle with heuristics (espe-

cially for determining neighboring agents); and (2) AV2 has

a larger and more diverse set of demonstration data, which

improves the (relative) performance of BC.

A.4. Distributional Realism Histograms

Figs. 6 to 9 (see the end of this document) show a com-

parison of the histograms used to calculate our distribu-

tional realism metrics on HIGHWAY and AV2. From Fig. 6,

we observe that methods learned using closed-loop train-

ing (i.e., IL-Path and MIXSIM) induce distributions that

best matches that of real data. In contrast, BC-Path, which

uses open-loop training, fails to accurately model speed and

acceleration, reflecting its deficiencies when deployed to

closed-loop simulation. Heuristic-Path is unable to accu-

rately recover the right tails of the speed and acceleration

distributions due to its rigid encoding of traffic rules such as

obeying speed limits.

Fig. 7 tells a similar story, but with the differences be-

tween the unconditional baselines and MIXSIM becoming

more pronounced since the baselines no longer have access

to the ground truth paths. Notably, BC fails to model the

distance-to-lead-agent distribution and places significantly

more mass on small distances—a reflection of its inability

to properly reason about agent-to-agent interactions when

deployed to closed-loop simulation.

We observe similar trends in Figs. 8 to 9 for experiments

on AV2. We note that all competing methods exhibit lower

distributional realism in acceleration on AV2 vs.HIGHWAY,

which reflects the fact that ground truth acceleration is de-

rived from noise finite difference approximations in AV2.

A.5. Safety Critical Variations Success Rates

We present a more detailed analysis comparing when

MIXSIM, BICYCLE, and BICYCLE-F successfully finds a

safety critical variation. In particular, we categorize our 400

optimization runs by the joint success or failure of the three

methods to find a safety critical variation.

From Tab. 3, we observe that the success rates of all three

methods are highly correlated, demonstrating that it is more

Figure 1. Overview of MIXSIM model architecture.

difficult to find safety critical behaviors for certain agents.

At least one method was successful in 52.5% of runs. Al-

most all of the safety critical variations found by MIXSIM

were also found by either or both of the baselines. This is

expected, as any lane graph route can equivalently be ex-

pressed as a sequence of kinematic bicycle controls, so the

latter is a superset of MIXSIM’s parameterization. The cost

of the more expressive parameter space appears elsewhere:

the surplus of safety critical variations found by the base-

lines are lower in quality with respect to realism.

B. MIXSIM Implementation Details

B.1. Input Parameterization

Agent history: Following [3], we adopt an viewpoint in-

variant representation of an agent’s past trajectory. More

precisely, we encode the past trajectory as a sequence of

pair-wise relative positional encodings between the past

waypoints and the current pose. Each relative positional en-

coding is a sinusoidal encoding of the distance and heading

difference between a pair of poses. See [3] for details.

Lane graph: We briefly describe how we construct our

lane graph representation G = (V,E). First, to obtain the

lane graph nodes, we discretize the centerlines in the high-

definition (HD) map into lane segments of fixed lengths (5m

for AV2 and 10m for HIGHWAY). Each node is initial-

ized with features such as length, width, curvature, speed

limit, and lane boundary type (e.g., solid, dashed). Follow-

ing [10], we then connect nodes with 4 different relation-

ships: successors, predecessors, left and right neighbors.

B.2. Model Architecture

We show an overview of MIXSIM model architecture

in Fig. 1. Briefly, it is composed of three main building

blocks: (1) context encoders for embedding lane graph and

agent history inputs; (2) an interaction module for capturing

scene-level interaction; and (3) policy decoders for parame-

terizing the route-conditional policy and routing policy. We

discuss each in detail below.

History encoder: The history encoder is a 1D residual

neural network (ResNet) followed by a gated recurrent unit

(GRU) that extracts agent features hagent = fagent(st) from

the joint agent states st. Each agent’s state si,t is a sliding

window of its position, heading, 2D bounding box, and ve-

locity over the past H time-steps. Intuitively, the 1D CNN

captures local temporal patterns and the GRU aggregates

them into a global feature. Unlike the map encoder, the

agent history encoder is run at every step of the simulation.

Lane graph encoder: The lane graph encoder is a graph

convolutional network (GCN) [10] that extracts map fea-

tures hmap = fmap(G) from a given lane graph G. We use

hidden channel dimensions of [128, 128, 128, 128], layer

normalization (LN), and max pooling aggregation. Since

map features are static, they are computed once and cached

between simulations thereafter.

Interaction module: To model scene-level interaction

(i.e., agent-to-agent, agent-to-map, and map-to-map), we

first build a heterogeneous spatial graph G′ by adding agent

nodes to the original lane graph G. In addition to the orig-

inal lane graph edges, we also connect agent nodes to their

closest lane graph nodes and fully connect all agent nodes to

each other. Then, we use a scene encoder parameterized by

a heterogeneous graph neural network (HeteroGNN) [3] to

process map features and agent features into fused features,

h′

map, h
′

agent = fscene(hmap, hagent) (1)

These contextual features forms the input to the route-

conditional policy decoder and the routing policy decoder.

Route-conditional policy decoder: Our route-

conditional policy decoder is independent per agent

but computation is batched for efficiency. In the following,

we describe inference for a single agent but omit the

subscript i for brevity.

We first pre-process the route by truncating it to a slid-

ing window of 10 lane graph nodes, starting at the node

closest to the agent at time t. Then, we build a heteroge-

neous graph consisting of only the considered agent and

lane graph nodes in its route. We use a HeteroGNN to fuse

features into a single route feature,

hroute = HeteroGNN({h′

map(v)|v ∈ R}, h′

agent) (2)

and we concatenate these route features with the agent’s

state features h′

agent. Finally, we pass the concatenated fea-

tures into a 4-layer MLP with hidden dimensions [128, 128,

128] to predict agent’s acceleration and steering angle,

at = MLP([hroute, h
′

agent]) (3)

Routing policy decoder: We use a simple MLP-based

architecture to parameterize the transition probability be-

tween lane graph nodes for each agent. Concretely, for each

pair of agent i and lane graph edge (u, v), we first concate-

nate the agent and edge features and then pass it through

a 3-layer MLP with hidden dimensions [128, 64] to get a

score,

fscore(u, v) = MLP([h′

map(u), h
′

map(v), h
′

agent]) (4)

We decode the transition probability by taking a softmax

over the logits of the outgoing edges,

h
edge
i (uj+1|uj , s0,m;ϕ) =

exp fscore(uj , uj+1)
∑

(uj ,v)∈E exp fscore(uj , v)

(5)

B.3. Inference

Route reconstruction for reactive re-simulation: We

adapt a hidden Markov model (HMM) for map match-

ing [12] to reconstruct each agent’s route from its trajectory

in the original scenario. Let xt ∈ R
2 denote the agent’s

2D bird’s eye view position at time t. Given a lane graph

G = (V,E), let zt denote the lane segment u ∈ V that

best explains the agent’s position xt at time t. We model

the joint distribution over the agent’s trajectory x0:T and its

associated lane segments z0:T with an HMM, where x0:T

are the observations and z0:T are the hidden variables,

p(x0:T , z0:T) = p(z0)p(x0|z0)

T
∏

t=1

p(zt|zt−1)p(xt|zt)

(6)

Under this formulation, we can determine the maximum

a posteriori route z0, . . . , zT using the Viterbi algorithm,

z⋆0:T = argmax
z0:T

p(z0:T |x0:T) (7)

In our model, the emission probability p(xt|zt) is pro-

portional to the point-to-line distance from xt to zt,

p(xt|zt) ∝ −min
p∈zt

∥xt − p∥2 (8)

The transition probability p(zt|zt−1) is proportional to

the absolute difference between the distance between zt−1

and zt in G and the distance between xt−1 and xt,

p(zt|zt−1) ∝ − |dG(zt−1, zt)− ∥xt−1 − xt∥2| (9)

where dG(zt−1, zt) is the distance along the shortest di-

rected path connecting zt−1 and zt in G. Note that

dG(zt−1, zt) = ∞ for any pair of disconnected lane seg-

ments zt−1 and zt; thus, topologically infeasible transitions

(and, by extension, routes) are impossible under our model.

Severity measure for finding safety critical variations:

The severity measure R(s0:T ,m) can be tuned to target dif-

ferent outcomes. For our experiments, we aim for simplic-

ity and choose to target collisions between the SDV and any

other agents. We use a continuous measure for collision: the

“buffer” distance between (the surfaces of) the SDV and the

nearest other agent,

MinBuffer = min
0:T

(distbuffer(SDV)) (10)

If the minimum buffer distance during a scenario is zero,

there is a collision.

However, minimum buffer distance is locally flat when

the adversary A is never the closest object to the SDV, so

it is difficult to optimize alone. Thus, in practice, an addi-

tional adversary-to-SDV distance term encourages the ad-

versary to approach the SDV,

AdvToSDV = max
(

min
0:T

dist(SDV, A)− 10, 0
)

(11)

When close enough (within 10 metres) to produce a safety

critical scenarios, the term becomes a constant.

Altogether, we minimize the sum of MinBuffer and

AdvToSDV. In our formulation of finding safety critical

variations as a maximization problem, the severity measure

is,

R(s0:T ,m) = −MinBuffer−AdvToSDV (12)

Parameter Value {default, cautious, aggressive}

Core IDM [14] parameters

desired speed (ms
−1) speed limit

desired gap (s) {1.5, 1.5, 0.75}
min clearance (m) 2.0

max idm accel. (ms
−2) {1.4, 1.4, 2.8}

comfortable decel. (ms
−2) {2.0, 1.4, 2.0}

free road exponent 4.0

Generalized IDM [9] parameters

follow interaction weight 0.5

max accel. (ms
−2) 3.0

max decel. (ms
−2) 4.0

MOBIL [8] parameters

politeness factor {0.5, 1.0, 0.0}
changing threshold (ms

−2) 0.1

max safe decel. (ms
−2) 4.0

Table 4. Parameter setting for Heuristic and Heuristic-Path.

Feature Bin size Min Max

Speed (ms
−1) 0.5 0.0 50.0

Accel. (ms
−2) 0.1 -10.0 10.0

Lead Dist. (m) 1.0 0.0 300.0

Nearest Dist. (m) 1.0 0.0 100.0

L. Accel. (ms
−2) 0.1 -10.0 10.0

Curvature 0.0004 -0.02 0.02

Table 5. Histogram setting for our distributional realism metrics,

used for both HIGHWAY and AV2.

C. Experiment Details

C.1. Baselines

Heuristic baselines: Our Heuristic baseline encodes nor-

mative driving behaviors (e.g., collision avoidance, traffic

rule compliance) by using IDM [14] for longitudinal control

and MOBIL [8] for selecting target lanes. More concretely,

at each planning step, we do the following: (1) associate the

agent with its closest lane centerline; (2) resolve its neigh-

bors on its current and adjacent lanes; (3) query MOBIL [8]

for its target lane; (4) query IDM [14] for safe acceleration;

and, lastly, (5) plan a constant acceleration lane-relative tra-

jectory in Frenet space [16] that smoothly converges to the

target lane centerline.

See Tab. 4 for detailed parameter settings for IDM and

MOBIL. For our main sim2real domain gap results, we use

the default behavior profile. To generate variations, we sam-

ple behavior profiles from {default, cautious, aggressive}
for each agent independently at the start of the simulation.

Learned baselines: When benchmarking against learned

baselines, we explicitly control for the effect of model archi-

tecture and focus our comparison to the route-based hierar-

chy and training methodology. Concretely, our BC and IL

baselines share identical context encoders and interaction

modules as MIXSIM, and they only differs from MIXSIM

in their decoders. While MIXSIM uses a route-conditional

decoder, BC and IL use an MLP decoder that is not condi-

tioned on route. Concretely, we use a 2-layer MLP with hid-

den dimension of 128. To extend these methods for generat-

ing realistic variations, we found Monte Carlo Dropout [5]

to be an effective approach without degrading performance.

Concretely, we add dropout layers in only the decoder and

train with dropout probability of 0.5. During inference, we

enable dropout with same probability to sample actions at

each simulation step.

Path-following variants: We extend the unconditional

baselines, which only condition on the initial scenario con-

text, to our setting where they have access to the full ref-

erence scenario. Concretely, we first fit a smooth driving

path to the reference path from the original scenario using

an ILQR-based path optimizer [1]. Then, we plan a constant

acceleration lane-relative trajectory in Frenet space [16] that

smoothly converges to the driving path. This approach has

the benefit of being robust to noise in the reference paths

from the original scenario and yields trajectory plans with

reasonable kinematics.

C.2. Dataset

HIGHWAY: Our first dataset is a collection of simulated

highway traffic scenarios. It consists of 1000 scenarios,

which we split into a training set of 800 and an evaluation

set of 200. Each scenario provides bounding box trajecto-

ries for every actor and a high definition map of the local

road topology. Together, the scenarios cover a representa-

tive range of highway road topologies, traffic conditions,

and actor interactions. In our experiments, the first 3s of

each scenario is given as context to the simulation and our

goal is to simulate the next 10s at 2Hz. Unless stated oth-

erwise, every vehicle actor is interactive (i.e., we simulate

their behaviors).

AV2: Our second dataset, Argoverse 2 Motion Forecast-

ing [17], consists of 250,000 11s urban traffic scenarios

which are split into training, validation, test sets on an

80/10/10 basis. In this dataset, the first 5s of each sce-

nario is given as context to the simulation and our goal is to

re-simulate the next 6s at 2Hz. Each scenario is automati-

cally annotated with trajectories whose interesting-ness and

annotation quality is categorized as follows: (1) focal de-

notes the maximally interesting fully observed trajectory;

(2) scored denotes all fully observed tracks within 30m of

the focal trajectory; and (3) unscored denotes all remaining

trajectories. Since annotation quality is low for unscored,

we only consider focal and scored vehicles as interactive

(i.e., other actors replay their annotated trajectories).

C.3. Metrics

Distributional realism: We calculate distributional real-

ism metrics in a three-step process.

1. Collect features: We start by collecting scenarios fea-

tures for both the reference real world scenarios and

simulated scenarios. Our scenario features focus on

agent kinematics (speed, acceleration, lateral accelera-

tion), agent-to-agent interactions (lead distance, near-

est distance). We compute each feature across K traf-

fic scenarios, each with Nk interactive agents and T

simulation time-steps (excluding the initial scenario

context). Then, we aggregate these features into a flat-

tened list of size
∑K

k=1 NkT .

2. Build histograms: We build histograms P (x) and

Q(x) with feature-specific histogram settings. See

Tab. 5 for detailed settings. We specify bin size man-

ually for each feature. We set min and max automati-

cally based on the data and clip values beyond reason-

able range.

3. Calculate divergence: Lastly, we compute the Jensen-

Shannon divergence (JSD) [7] between histograms,

JSD(P || Q) =
1

2
KLD(P || M) +

1

2
KLD(Q || M)

(13)

where KLD(P || Q) = Ex∼P [logP (x)− logQ(x)] is

the KL-divergence and M = 1
2 (P +Q).

Diversity: We evaluate diversity with two metrics. First,

we consider final displacement diversity (FDD), which

measures the maximum distance between the final trajec-

tory waypoints among the sampled scenario variations. In

particular, given initial context from a real scenario, we

sample K simulations and calculate,

FDD
(

{s̃(k)}Kk=1

)

=
1

N

N
∑

i=1

max
k,k′

∥

∥

∥
s̃
(k)
i,T − s̃

(k′)
i,T

∥

∥

∥

2

(14)

where s̃
(k)
i,T is the 2D position of the i-th interactive agent

at the final time-step T of the simulation in the k-th sam-

ple. Furthermore, we report the minimum scenario FDE

(minSFDE) [13], where the final displacement error (FDE)

is computed for only the best matching sample.

MinSFDE(s, s̃) = min
k

1

N

N
∑

i=1

∥

∥

∥
si,T − s̃

(k)
i,T

∥

∥

∥

2

(15)

Intuitively, this metric measures a combination of realism

and diversity, since the simulation model need to recover

a scenario variation that matches the ground truth from a

limited number of samples (K = 6 in our experiments).

Controllability: We evaluate MIXSIM’s controllability

via a cyclic consistency metric [18]. Specifically, we com-

pute route consistency (RC), which measures the path-to-

path distance between an agent’s desired route and the route

reconstructed from its simulation trajectory. This metric im-

plements the intuition that the more controllable an agent is,

the better we can explain its simulation trajectory by its de-

sired route. Thus, for an idealized controllable agent, the

difference between its desired route and one reconstructed

from its simulation trajectory should be small.

Given a lane graph G = (V,E), let gi = u0, . . . , uL

denote the i-th agent’s desired route in G. Let g̃i =
ũ0, . . . , ũL′ denote a route reconstructed from its simula-

tion trajectory using the HMM-based algorithm described

earlier. To compute route consistency, we first extrapolate

gi and g̃i so that the two routes have similar length, assum-

ing the agent keeps its final lane. Then, we compute route

consistency as the symmetrized distance between gi and g̃i,

RC(gi, g̃i) =
1

2
(droute(gi, g̃i) + droute(g̃i,gi)) (16)

where droute(gi, g̃i) is the average point-to-line distance

between the mid-point of each lane segment in gi to its near-

est lane segment in g̃i,

droute(gi, g̃i) =
1

|gi|

∑

uℓ∈gi

min
ũk∈g̃i

min
p∈ũk

∥mid(uℓ)− p∥2

(17)

and likewise for droute(g̃i,gi). We report route consistency

averaged over agents and scenarios.

C.4. Finding Safety Critical Variations

Dataset: To increase the experiment scale beyond the

original evaluation set of 200 HIGHWAY scenarios, the ad-

versarial experiment is conducted with an independently-

generated set of 385 simulated highway scenarios. We refer

to this dataset as HIGHWAY-ADVERSARIAL.

Actor selection: Given an 8 second log containing

ground truth actor trajectories, we use the first 3 seconds

as context. Over the remaining 5 seconds, we control the

chosen adversarial actor while the remaining non-SDV ve-

hicles are controlled by MIXSIM. A successful adversarial

actor must be close enough to influence the SDV within the

short attack window. We heuristically select candidate ac-

tors that: (1) are travelling in the same direction as the SDV;

and (2) are able to catch up to the SDV within the 5 second

unroll window by accelerating or decelerating at 1.0m s−2.

In HIGHWAY-ADVERSARIAL, this produces a total of 400

candidates, ranging from 0 to 6 per scenario.

Baselines: The BICYCLE and BICYCLE-F baselines use

the same kinematic bicycle model parameterization as [15].

The parameters do not provide an explicit trajectory but

rather a perturbation that is added to the original trajectory

of the actor. We review the details here.

• Acceleration: both the perturbation and the final tra-

jectory are constrained to ±2.0m s−2.

• Curvature Rate: both the perturbation and the fi-

nal rate of change of curvature are constrained to

±0.05m−1 s−1.

Different from [15], we do not reject trajectories that collide

with the SDV’s ground truth trajectory because we are not

investigating solvability.

In BICYCLE-F, we implement the feasible set constraint

by pre-sampling 20,000 trajectories from a uniform distri-

bution and rejecting those which go off-road or collide with

non-SDV agents. If the feasible set is smaller than 100 tra-

jectories, we resample up to 9 more times. Over 99% of

sampled trajectories are rejected, demonstrating how rare it

is to find even mildly realistic actor behaviour. After this

process, 82% of feasible sets contain no more than 200 tra-

jectories.

The adversarial actor is controlled for 5 seconds at 2Hz,

for a total of 10 control points resulting in a 20-dimensional

search space.

MIXSIM: For our experiment, we choose to map the dis-

crete space of lane graph routes to a continuous space that is

comparable to the one used by the BICYCLE and BICYCLE-

F baselines. There are many ways to do this; we use a pa-

rameterization that is analogous to steering. Starting from

a lane segment u in the lane graph G = (V,E), we con-

sider all lane segments v ∈ V where: (1) v is a successor,

left, or right neighbour of u; and (2) the relative heading

from u to v is within π
3 rad of the direction of u. We then

break [0, 1] into equally-sized sub-intervals and associate

each sub-interval with one of the lane segments, ordered

by the relative heading from u to that segment. Given a de-

cision parameter d ∈ [0, 1], we select the next lane segment

corresponding to which sub-interval d is in. Then, given a

starting node u0 and a sequence of L decision parameters

d1, . . . , dL, we construct a lane graph route u0, . . . , uL by

using di to decide ui given ui−1. This route is finally pre-

sented to the route-conditional policy.

In HIGHWAY-ADVERSARIAL, the adversarial actor is as-

sumed to have a maximum speed of 30m s−1. To control the

Parameter BICYCLE & BICYCLE-F MIXSIM

variance 564.03 620.71

lengthscale 0.1492 0.2124

Table 6. Fitted Matern kernel parameters for Bayesian Optimiza-

tion.

adversary for the next 5 seconds, the constructed route must

have a length of at least 150 meters. Using a lane graph with

10 meter lane segments, a decision parameter sequence of

length 15 is sufficient, resulting in a 15-dimensional search

space.

Bayesian optimization: We use our own implementation

of Bayesian Optimization built with [6] and [11]. To stan-

dardize the search space, the acceleration and curvature rate

parameters used by BICYCLE and BICYCLE-F are normal-

ized to [0, 1]. MIXSIM’s decision sequence parameteriza-

tion is already normalized. For all experiments, we use a

Matern kernel with ν = 5
2 and the expected improvement

acquisition function with ϵ = 0.01. To find the optimal ker-

nel parameters, we perform the same optimization experi-

ment on HIGHWAY using default kernel parameters. The

data from those experiments is used to fit separate kernels

for the two parameterizations; see Tab. 6 for the fitted val-

ues. Our query budget of 75 matches that of [15]. We find

this sufficient, as the vast majority of successful attacks are

found within 25 queries.

References

[1] Dimitri Bertsekas. Dynamic Programming and Optimal

Control. 2000. 5

[2] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir

Anguelov. MultiPath: Multiple probabilistic anchor trajec-

tory hypotheses for behavior prediction. In CoRL, 2019. 1,

2

[3] Alexander Cui, Sergio Casas, Kelvin Wong, Simon Suo, and

Raquel Urtasun. GoRela: Go relative for viewpoint-invariant

motion forecasting. In ICRA, 2023. 1, 2, 3

[4] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou,

Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schnei-

der, and Nemanja Djuric. Multimodal trajectory predictions

for autonomous driving using deep convolutional networks.

In ICRA, 2019. 1, 2

[5] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian

approximation: Representing model uncertainty in deep

learning. In ICML, 2016. 5

[6] GPy. GPy: A gaussian process framework in python. http:

//github.com/SheffieldML/GPy, since 2012. 7

[7] Maximilian Igl, Daewoo Kim, Alex Kuefler, Paul Mougin,

Punit Shah, Kyriacos Shiarlis, Dragomir Anguelov, Mark

Palatucci, Brandyn White, and Shimon Whiteson. Sym-

phony: Learning realistic and diverse agents for autonomous

driving simulation. In ICRA, 2022. 6

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

[8] Arne Kesting. MOBIL: General lane-changing model for

car-following models. 2007. 5

[9] Karsten Kreutz and Julian Eggert. Analysis of the general-

ized intelligent driver model (GIDM) for uncontrolled inter-

sections. In ITSC, 2021. 5

[10] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song

Feng, and Raquel Urtasun. Learning lane graph representa-

tions for motion forecasting. In ECCV, 2020. 1, 2, 3

[11] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz,

Joseph E. Gonzalez, and Ion Stoica. Tune: A research plat-

form for distributed model selection and training. CoRR,

2018. 7

[12] Paul Newson and John Krumm. Hidden markov map match-

ing through noise and sparseness. In SIGSPATIAL, 2009. 4

[13] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel

Urtasun. TrafficSim: Learning to simulate realistic multi-

agent behaviors. In CVPR, 2021. 6

[14] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Con-

gested traffic states in empirical observations and micro-

scopic simulations. Physical Review E, 2000. 5

[15] Jingkang Wang, Ava Pun, James Tu, Sivabalan Mani-

vasagam, Abbas Sadat, Sergio Casas, Mengye Ren, and

Raquel Urtasun. AdvSim: Generating safety-critical scenar-

ios for self-driving vehicles. In CVPR, 2021. 7

[16] Moritz Werling, Julius Ziegler, Sören Kammel, and Sebas-

tian Thrun. Optimal trajectory generation for dynamic street

scenarios in a Frenét frame. In ICRA, 2010. 5

[17] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lam-

bert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Rat-

nesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes,

Deva Ramanan, Peter Carr, and James Hays. Argoverse 2:

Next generation datasets for self-driving perception and fore-

casting. In NeurIPS Datasets and Benchmarks, 2021. 5

[18] Eric Zhan, Albert Tseng, Yisong Yue, Adith Swaminathan,

and Matthew J. Hausknecht. Learning calibratable policies

using programmatic style-consistency. In ICML, 2020. 6

Figure 2. Comparison against path-following baselines in reconstruction realism metrics on HIGHWAY.

Figure 3. Comparison against non path-following baselines in reconstruction realism metrics on HIGHWAY.

Figure 4. Comparison against path-following baselines in reconstruction realism metrics on AV2.

Figure 5. Comparison against non path-following baselines in reconstruction realism metrics on AV2.

Figure 6. Comparison against path-following baselines in distributional realism metrics on HIGHWAY.

Figure 7. Comparison against non path-following baselines in distributional realism metrics on HIGHWAY.

Figure 8. Comparison against path-following baselines in distributional realism metrics on AV2.

Figure 9. Comparison against non path-following baselines in distributional realism metrics on AV2.

	. Additional Results
	. Comparison to Motion Forecasting Models
	. Ablation Study
	. Reconstruction Error Across Time
	. Distributional Realism Histograms
	. Safety Critical Variations Success Rates

	. MixSim Implementation Details
	. Input Parameterization
	. Model Architecture
	. Inference

	. Experiment Details
	. Baselines
	. Dataset
	. Metrics
	. Finding Safety Critical Variations

