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Fig. 1. Given a camera video and LiDAR sweeps as input, our model reconstructs accurate geometry and surface properties, which can be used to
synthesize realistic appearance under novel viewpoints using our physics-based radiance module, enabling realistic sensor simulation for self-driving.

Abstract— Reconstructing objects from real world data and
rendering them at novel views is critical to bringing realism,
diversity and scale to simulation for robotics training and
testing. In this work, we present NeuSim, a novel approach
that estimates accurate geometry and realistic appearance from
sparse in-the-wild data captured at distance and at limited
viewpoints. Towards this goal, we represent the object surface
as a neural signed distance function and leverage both LiDAR
and camera sensor data to reconstruct smooth and accurate
geometry and normals. We model the object appearance with
a robust physics-inspired reflectance representation effective
for in-the-wild data. Our experiments show that NeuSim has
strong view synthesis performance on challenging scenarios
with sparse training views. Furthermore, we showcase com-
posing NeuSim assets into a virtual world and generating
realistic multi-sensor data for evaluating self-driving perception
models. The supplementary material can be found at the project
website: https://waabi.ai/research/neusim/

I. INTRODUCTION

Simulation is key for testing at scale self-driving systems.
To allow for end-to-end closed loop testing, the simulator
should produce in real-time realistic sensor data, which
are rendered views of a 3D virtual world. Most simulators
employ CAD models [1], [2], which have unrealistic appear-
ance, require costly manual construction and cannot scale to
represent the diversity and complexity of the real world. To
address this issue, we focus on automatically reconstructing
high-quality 3D assets cost-efficiently from sparse, in-the-
wild, multi-sensor data captured by a moving platform along
constrained trajectories. The reconstructed assets should have
accurate shape and appearance, and should render efficiently.

A recent promising approach to asset shape reconstruc-

tion and novel view synthesis is Neural Radiance Fields
(NeRF) [3], which represents the scene as a continuous
density and radiance field parameterized by neural networks,
and leverages volume rendering [4] to render the scene.
NeRF produces renderings that match the observed images;
however, the resulting asset representation is not suitable for
scalable virtual world creation from in-the-wild data due to
shape radiance ambiguity [5], noisy geometry [6], [7], in-
complete reconstruction (see Fig. 2) and significant artifacts
and distortion at extrapolated viewpoints (see Fig. 3). Several
works have aimed to improve NeRF [5]–[8] and adapt it to
outdoor scenes [5], [9], but they focus on either synthetic data
or small scenes densely captured in controlled environments.
In contrast, we focus on reconstruction from data captured
by moving platforms (e.g., self-driving vehicle) in outdoor
environments, which are more challenging due to the sparsity
and limited range of sensor viewpoints, varying resolution
and distance from the sensor, and sensor noise.

In this paper, we propose NeuSim, a novel neural vol-
ume rendering approach that takes sparse, in-the-wild image
and LiDAR data and learns an asset’s shape and surface
properties for robust and realistic multi-sensor simulation.
NeuSim is composed of a neural geometry representation
that generates precise surfaces and models appearance via
a physics-based radiance model, which accurately learns
texture and reflectance. NeuSim also incorporates structural
symmetry priors for common traffic actors (primarily cars,
trucks) to learn the surface properties of the unobserved
side (see Fig. 2), enabling robust novel view synthesis and
seamless simulation of new scenarios. NeuSim not only
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Fig. 2. The structural symmetry priors helps to reconstruct shape and
appearance on unseen regions for common traffic objects (e.g.. cars, trucks).
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Fig. 3. Prior MLP radiance model [3], [6], [7] cannot generalize well to
large viewpoint change though the underlying geometry is correct. NeuSim’s
Physics Radiance Module models the appearance robustly and realistically.

renders and learns images, but also predicts LiDAR depths
and intensities, resulting in better geometry than assets gener-
ated from images alone, and enabling consistent multi-sensor
simulation, which is key for self-driving testing, as modern
perception systems exploit multiple sensors for robustness.
Our factorized geometry and radiance model easily bakes
into an explicit mesh allowing for easy modification, (1000x)
faster rendering, and integration into existing simulators.

Our experiments show that NeuSim reconstructs high-
quality assets from in-the-wild data that render efficiently
in existing graphics engines. Finally, we leverage NeuSim
assets to generate sensor data for testing perception systems.

II. RELATED WORK

1) Assets for Sensor Simulation: Self-driving simulators
such as CARLA [1] and AirSim [2] leverage artist-created
3D CAD models to build virtual worlds. While these assets
have clean geometry and are easily modifiable, they are
expensive to create, have limited diversity and scale, and lack
realism [10]. Several works leverage in-the-wild data from
driving scenes to build assets at scale. LiDARSim and Sur-
felGAN [11], [12] aggregate LiDAR across frames to build
diverse textured surfel representations, but have noisy geom-
etry and appearance. Other works perform shape completion
and texture estimation using a learned asset representation.
Several leverage synthetic CAD data [13]–[17] as a prior,
and then generate the final asset either through feed-forward
prediction or optimization on real data. These approaches
are limited by the set of CAD models used and are often not
photorealistic. GeoSim [18] deforms a template mesh and
leverages image warping for photorealistic video simulation,
but the assets do not model reflectance and have overly
smooth geometry due to its limited mesh representation.
DriveGAN [19] represents assets as disentangled latent codes
and generates video from control inputs, allowing for fully
differentiable simulation, but is limited in its realism and
is not temporally consistent. In contrast, we build realistic

assets that have high-fidelity geometry, can be inserted into
new and diverse scenarios at scale, and are temporally and
multi-sensor consistent.

2) Neural Volume Rendering: Neural implicit representa-
tion [20]–[28] and volumetric rendering approaches [4], [29],
such as Neural Radiance Fields (NeRF) [3] have achieved
high quality image rendering given dense and uniform
training views, but can have noisy geometry and artifacts,
especially when trained on sparse and limited viewpoints.
To learn a better geometry, recent works have assumed solid
closed surface objects and combined SDFs with radiance
fields [6], [7], [30]–[32] and leverage 3D information such
as RGB-D measurements [31], [33], resulting in improved
geometry. We also leverage an SDF representation, and
incorporate LiDAR data as supervision. Our work combines
these enhancements with a learned reflectance model to learn
more robust appearance (see Fig. 3) for in-the-wild data.

Several works learn a reflectance model and estimate scene
lighting [34]–[38], but they focus on improving controlla-
bility of NeRF and learn on synthetic data or controlled
environments. We leverage a simple yet effective Phong illu-
mination model to model reflectance [39], [40], and supervise
with multi-sensor data (RGB and LiDAR intensity), to better
render objects at novel views from sparse in-the-wild data.
We also incorporate structural priors such as symmetry
over the asset shape and surface properties to complete the
missing information due to limited sensor observations.

Other works have focused on the composability of neural
radiance fields [41]–[46], but do not model the reflectance
and do not generate 3D geometry for multi-sensor simula-
tion. In contrast, our approach models reflectance and can
be baked into an explicit textured mesh for fast rendering.

3) Inverse Graphics: Several recent works generate assets
from in-the-wild data with decomposed shape, material, and
illumination via differentiable mesh rendering [38], [47],
[48]. These approaches build on intrinsic decomposition, the
task of decomposing the image into albedo, illumination,
etc. based on image formation [49]–[51]. Our work is most
similar to NeRS [48], which estimates shape through a
deformable implicit surface representation and appearance
with a learned Phong reflectance model. However, our use
of volume rendering and an SDF representation results in
more accurate assets, as shown in our experiments.

III. METHOD

Our goal is to automatically build rigid object assets from
in-the-wild data for sensor simulation. Given camera images
and LiDAR point clouds captured by a moving platform, we
want to learn the object’s shape and appearance. Towards this
goal, we propose NeuSim, a novel approach that is composed
of a structured neural surface representation and a physics-
based reflectance model. This decomposed representation
enables generalization to new views from sparse in-the-wild
viewpoints. Fig. 4 provides an overview of NeuSim. First,
we briefly review NeRF. Next, we introduce Neural Surface
Modeling for accurate surface and normal estimation. We
then introduce our Physics-based Radiance Module for ro-
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Fig. 4. Given a continuous 3D location, NeuSim outputs the signed distance value of the point to object surface, the albedo, and the specular property.
The signed distance value is used to derive the surface normal, which is then used to shade the diffuse and specular components to obtain the final RGB
color. We also render the LiDAR depth and intensity, as well as object mask from the learned representation.

bust and realistic appearance modelling. Finally we present
how our model performs rendering and learns from data.

A. Review of NeRF Representations
NeRF [3] represents the scene with a Multi-Layer Per-

ceptron (MLP) that maps a point location x ∈ R3 and
viewing direction d ∈ R3 to a volume density σ(x) ∈ R and
RGB color radiance c(x,d) ∈ R3. The color is conditioned
on the viewing direction to model view-dependent effects.
Given a posed camera, NeRF performs volume rendering by
evaluating the MLP at points along a camera ray to compute
pixel color. We define each pixel’s ray as {r(t) = o+td | t>
0}, where o is camera center and d is the viewing direction
originating from the camera center. Given N sample points
{xi}Ni=1 along the camera ray, the pixel color is

C(r) =

N∑
i=1

α(xi)T (xi)c(xi,d) (1)

α(xi) = 1− exp (−σ(xi)δi) , T (xi) =

i−1∏
j=1

(1− α(xj))

where α(xi) is the alpha compositing computed using the
density prediction σ(x) and the distance between adjacent
samples δi = ∥xi+1 − xi∥2, and T (xi) is the accumulated
transmittance along the ray.

B. Neural Surface Modeling
NeRF-based approaches [3], [5], [52] generate photoreal-

istic renderings, but are unable to reconstruct accurate ge-
ometry, especially when trained on sparse in-the-wild views.
Rather than model the space as a heterogenous soft volume
as in NeRF [3], we take inspiration from [7], [20], [30], [31]
and assume the object of interest has a topologically closed
surface that we represent as the zero-level set of a signed
distance function (SDF), parameterized by an MLP. This
representation is effective for most objects of interest in self-
driving simulations (e.g., vehicles, construction elements).

We define an SDF MLP network fSDF : x → s mapping
a point in 3D space x ∈ R3 to its signed distance s(x) ∈ R
from the object surface. The surface S of the object can then
be defined as the zero-level set of the SDF function:

S = {x ∈ R3 | s(x) = 0}. (2)

And the normal is derived as the SDF’s gradient, n = ∇s(x).
To perform volume rendering (Eq. (1)), we need to convert

the signed distance to an alpha value α(x) ∈ [0, 1], where
α(x) = 1 if x is inside the object, and α(x) = 0 otherwise.
Towards this goal, we use a sigmoid-like function:

α(x) =
1

1 + exp(β · s(x))
, (3)

where α(x) transitions from 0 to 1 when s(x) transitions
from positive (outside) to negative (inside). To reconstruct
solid objects, the converting function should model a step
function at the object’s surface, i.e., β → ∞. To prevent
vanishing gradients, we make β a learnable parameter.

C. Robust and Realistic Appearance Modelling
Given our surface geometry representation, we now dis-

cuss how we model object appearance. We represent the
appearance of a 3D point x viewed from direction d as a
radiance field c(x,d), a function of the material properties
fr, the radiance from the environment L(x, ω) (with ω the
incoming radiance direction), and the surface normals n(x).
c(x,d) is estimated via rendering equation [53], [54]:

c(x,d) =

∫
Ω

fr(x, ω,d)L(x, ω)(ω · n)dω (4)

where fr(x, ω,d) is the bidirectional reflectance distribution
function (BRDF), which defines the proportion of light
reflected from the incoming light direction ω to the viewing
direction d at position x. The integral is computed over the
hemisphere Ω centered at location x and oriented towards
the normal n. Since in outdoor settings the light mainly
comes from the sun, we model the scene lighting as a set of
infinitely far-away directional lights, and ignore attenuation
effects to the incoming light intensity. Thus the light function
is independent of the point location, i.e., L(x, ω) = L(ω).

NeRF models the radiance equation using an MLP that
directly maps a point x and view direction d to the emitted
radiance c(x,d). This does not generalize well to larger
viewpoint variation (see Fig. 3), especially when trained on
a sparse set of images. The MLP radiance lacks knowledge
of the underlying light transport physics and overfits. To
address this, we model the radiance function using a simple
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Fig. 5. Rendering of normal derived from density and SDF representation.

yet effective Phong illumination model [39], [40] with spatial
varying albedo and shininess. Our framework also supports
other PBR models (e.g., microfacet [55]). The Phong model
consists of diffuse and specular components:

cphy(x,d) =

∫
Ω

(
a(x)(ω · n)︸ ︷︷ ︸

Diffuse term

+ fs(x,d)︸ ︷︷ ︸
Specular term

)
L(ω)︸ ︷︷ ︸
Light

dω (5)

The diffuse component depends on the albedo a(x) ∈ R3.
The specular component fs(x,d) is view-dependant:

fs(x,d) = as(x)
γ(x) + 1

2π
(rω · d)γ(x) (6)

where as(x) ∈ R is the specular albedo measuring the
specular highlight intensity, rω = 2(ω · n)n − ω is the
reflected light direction, and γ(x) is the shininess.

We predict the diffuse albedo a(x), specular albedo as(x)
and shininess γ(x) using reflectance MLPs freflectance. We
use a learnable 2D environment map E ∈ RA×E×3 to
parameterize the environment light L(ω), where A and E
are the azimuth and elevation resolution respectively. E stores
the light intensity for each discrete incoming light direction
ω. We numerically estimate integral in Eq. (5) as the sum of
radiance values from discrete incoming lights Eω = L(ω):

cphy ≈ a
∑
ω

(ω · n)Eω +
as(γ + 1)

2π

∑
ω

(rω · d)γEω (7)

cphy(x,d) relies on accurate normal estimation n. Prior
NeRF-based methods estimates the normal [34], [35], [37] by
taking the normalized gradient of volume density w.r.t.input
3D location, but they are noisy (see Fig. 5). Other methods
use a MLP to predict the normal vector and enforce smooth-
ness via regularization [34], [36]. These predicted normals
tend to be smoother, but they are decoupled from the actual
shape and do not reflect the exact geometry. In contrast,
our neural SDF representation ensures smooth and accurate
normal estimated as the SDF’s gradient, n = ∇s(x).

D. Rendering with NeuSim
1) Scene Representation: As we focus on object recon-

struction, we assume that the object of interest in the scene
is bounded by a cuboid and we only render in the frustum
generated between the viewing plane and the projected
cuboid [41]. We assume the rendered ray r(t) intersects the
cuboid at tnear and tfar. We divide the traversed space into
foreground ({tnear < t < tfar}) and background. To decouple
the object sensor observations from the background’s, we
take inspiration from NeRF++ [5] and model them with
separate networks. We use our proposed model to represent
the foreground and use NeRF with an inverted sphere pa-
rameterization [5] to represent the background. For rendering
only the asset, the background network is discarded.

2) Rendering Camera: To render the RGB observations,
we first draw stratified samples on the ray and query the
SDF MLPs to compute α(x) as in Eq. (3). For each sampled
point, we query the reflectance MLPs to compute the albedo
a(x), as(x) and shininess γ(x). We then compute the fore-
ground radiance c(x,d) for each sampled point x with view
direction d, using Eq. (7) and the learned environment map
E . To compute the background scene radiance, we sample
the ray’s intersections with Multiple-Sphere Images (MSI)
surrounding the object of interest. We generate the radii for
MSI by linearly interpolating inverse depths. The rendered
RGB is computed by alpha compositing using Eq. (1).

3) Rendering LiDAR Depth and Intensity: Given a query
LiDAR ray, we sample points along the ray similar to camera
rendering, and then render the LiDAR depth and intensity as:

D(r) =

N∑
i=1

α(xi)T (xi)di, I(r) =

N∑
i=1

α(xi)T (xi)i(x). (8)

where di = ∥xi − o∥2 is the depth value of sample point xi

on the ray originating from o. We add another branch on the
reflectance MLP to predict the intensity value i(x) ∈ R+.

4) Rendering Object Mask: We render the object mask to
help provide additional signal on object boundaries. We es-
timate the rendered foreground probability as the aggregated
weights in the foreground intervals:

m(r) =
∑

tnear<t<tfar

α(o+ td)T (o+ td). (9)

E. Learning NeuSim
To learn the model, we minimize the difference between

the sensor observations and our rendered outputs. We lever-
age RGB color (Lcolor), LiDAR point clouds (Llidar) and
object foreground masks (Lmask). We also add an Eikonal
term (LEik) to regularize the predicted SDF, and a symmetry
term (Lsym) for vehicle objects. The full training loss is:

L = Lcolor + λlidarLlidar + λmaskLmask + λEikLEik + λsymLsym (10)

For each asset, we train the shape and reflectance networks
and environment lighting map jointly via gradient descent
over ray batches of size N randomly sampled from the sensor
data. We now review each loss term.

1) RGB supervision: Similar to NeRF, we want to ensure
that the rendered pixels match the observed ones. The camera
image loss Lcolor is defined as:

Lcolor =
1

N

N∑
i=1

∥∥∥C(ri)− Ĉi

∥∥∥
1

(11)

where C(ri) is rendered color and Ĉi is observed color.
2) LiDAR supervision: We leverage LiDAR depth mea-

surements to supervise the SDF field for more accurate
geometry, as well as intensity to learn better shape and
surface properties. The LiDAR loss Llidar is defined as:

Llidar=
1

N

N∑
i=1

(∥∥∥D(ri)−D̂i

∥∥∥
2
+ λint

∥∥∥I(ri)−Îi

∥∥∥
2

)
(12)



Method MSE↓ PSNR↑ SSIM↑ LPIPS↓

SI-ViewWarp [57] 0.0233 17.51 0.514 0.371
SAMP [13] 0.0144 19.52 0.628 0.283

NeRS [48] 0.0176 18.49 0.562 0.265
NVDiffRec [58] 0.0114 20.46 0.593 0.396

NeRF++ [5] 0.0138 20.86 0.611 0.300
NeuS [6] 0.0115 21.37 0.640 0.247
Ours 0.0081 22.44 0.692 0.202

TABLE I
QUANTITATIVE COMPARISONS ON PANDAVEHICLE FOR NVS TASK.

where D(ri) is the rendered LiDAR depth and I(ri) is the
rendered LiDAR intensity. D̂i and Îi are the LiDAR depth
and intensity observations, respectively. We also penalize
large weight predictions that are far from the observations:

Llidar = Llidar +
1

N

N∑
i=1

 ∑
∥dij−D̂i∥

2
>ϵ

wij

 (13)

3) Object mask supervision: Foreground masks identify
the object in the image. The mask loss Lmask is defined as:

Lmask =
1

N

N∑
i=1

∥m(ri)− m̂i∥2 , (14)

where m(ri) is the rendered foreground probability and m̂i

is the estimated mask from an off-the-shelf algorithm [56].
4) Eikonal Regularizer: This term encourages the SDF to

satisfy the Eikonal equation and generate unit normals [28]:

LEik =
1

M

M∑
i=1

(∥∇s(xi)∥2 − 1)
2 (15)

where {s(xi)}Mi=1 is the predicted signed distance in a batch.
5) Structural Symmetry Prior: To reconstruct unseen re-

gions, we incorporate symmetry priors for common traf-
fic objects (e.g., cars, trucks). Although the radiance is
not symmetric due to diffuse and specular shading with
lighting, the surface geometry s(x) and material properties
(a(x), as(x), γ(x)) are approximately symmetric. We denote
the transform from world coordinate to the canonical object
coordinate (Front-Left-Up) as T =

(
R t
0 1

)
∈ SE(3). For

each query point x with normal n in world coordinate, the
symmetrized point x′ and normal n′ are:

x′ = T−1


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

Tx, n′ = R−1

1 0 0
0 −1 0
0 0 1

Rn (16)

We jointly optimize T during training, the symmetry loss is:

Lsym =
1

M

N∑
i=1

∥s(xi)− s(x′
i)∥2 + ∥n′(xi)− n(x′

i)∥2

+ ∥a(xi)− a(x′
i)∥2 + ∥as(xi)− as(x

′
i)∥2 + ∥γ(xi)− γ(x′

i)∥2

(17)

IV. EXPERIMENTAL EVALUATION

In this section we demonstrate our model performance on
in-the-wild data. We first introduce our experimental settings.
We then compare our model against state-of-the-art methods,
and also ablate our design choices. Finally, we apply NeuSim
for fast and realistic sensor simulation for self-driving.

Supervision MSE↓ PSNR↑ SSIM↑ LPIPS↓

img 0.0131 21.07 0.646 0.269
img + lidar 0.0089 22.07 0.677 0.211
img + lidar + mask 0.0091 22.13 0.679 0.198
img + lidar + mask + sym 0.0081 22.44 0.692 0.202

TABLE II
ABLATION ON LEARNING SUPERVISION FOR NEUSIM.

Radiance Model MSE↓ PSNR↑ SSIM↑ LPIPS↓

MLP Radiance 0.0118 21.31 0.636 0.232
Physics-based Radiance 0.0091 22.13 0.679 0.198

TABLE III
ABLATION ON RADIANCE MODEL FOR APPEARANCE PREDICTION.

A. Experimental Setting

We focus on recovering the shape and appearance of
vehicles, the most common actor in self-driving scenes, and
evaluate on the task of novel view synthesis. We curated 10
vehicles with diverse shape and appearance under complex
illumination from the PandaSet [59] to derive the Pan-
daVehicle dataset. This dataset has calibrated LiDARs and
multiple cameras. We use the left camera for training and the
front-left camera for evaluation. Each asset has on average
∼24 training views. PandaVehicle is more challenging than
existing novel view synthesis datasets due to limited range
and number of viewpoints available for training, as well as
the complex illumination. We evaluate the NVS performance
using Mean-Square Error (MSE), Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), and
Learned Perceptual Image Patch Similarity (LPIPS) [60].
Since we focus on assets, we use the predicted segmentation
mask [56] to only evaluate the foreground pixels.

B. Novel View Synthesis

1) State-of-the-art (SoTA) Comparison: We compare our
model with state-of-the-art Neural Radiance Fields based
approach NeRF++ [5], NeuS [6] and inverse graphics model
NeRS [48], NVDiffRec [58]. We choose these baselines as
they model view-dependent appearance and work well in
our outdoor setting. We also compare against non-learning
based LiDAR guided single view warping model [57] and
CAD-based model SAMP [13]. As shown in Table I, our
model achieves the best performance across all metrics. A
qualitative comparision is depicted by Fig. 6. Our model gen-
eralizes better to large viewpoint changes when compared to
NeRF-based method [5], [6], demonstrating the value of our
physics-based reflectance module. Our model also captures
more fine-grained details than inverse graphics model [48]
due to the expressive implicit representation.

2) Ablation on Learning Supervision: We study the effect
of LiDAR, mask and symmetry supervision in Table II.
Incorporating LiDAR improves performance since the ad-
ditional depth and intensity measurements help learn better
geometry and reflectance. Mask and symmetry supervision
does not significantly improve metrics but it helps separate
objects from the ground and complete unseen regions.
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Fig. 6. Qualitative comparisons on PandaVehicle for novel view synthesis. For each vehicle, we show results at novel views with large view variation.
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Fig. 7. NeuSim reconstructs disentangled shape and appearance, enabling (a) efficient mesh rendering by baking diffuse and specular properties into an
explicit mesh, which is 1000x faster than volume rendering, (b) and multi-sensor simulation for self-driving via actor insertion.

3) Ablation on Radiance Model: We study the effect
of the radiance model in Table III. For the MLP setting,
we replace the reflectance model with a 4-layer viewpoint-
dependant MLP predicting the color similar to [6]. Our re-
flectance model achieves better performance, demonstrating
the benefits of a physics-based decomposed representation.

C. Downstream Applications
1) Efficient Rendering: Our approach recovers geometry,

surface texture and specular material that can be baked
into an explicit mesh for efficient rendering. We perform
marching cubes to generate the mesh from the SDF represen-
tation [61], and evaluate on each vertex to compute the per-
vertex albedo, specular albedo, and shininess mappings. We
render the explicit mesh with OpenGL using a customized
shader implementing Eq. (7). In Fig. 7 (a), we show the
reconstructed albedo and specular material, followed by a
visual comparison between using mesh rendering and volume
rendering. Mesh rendering is 1000x faster than volume
rendering (∼ 77 FPS vs. ∼ 0.03 FPS on consumer GPU
GTX 1080 Ti and Ubuntu OS) and still provides good visual
quality. This enables efficient simulation.

2) Downstream Evaluation on Camera Simulation: We
evaluate the object detection and instance segmentation algo-
rithm on the simulated camera rendering at novel viewpoints.
Specifically, we insert and blend the actors into background
image and replace the existing actors. Then we compute the
instance-level IoU of predicted bounding box and segmen-
tation mask between real image and simulated image. This
detection/segmentation agreement metric indicates how well
we can use the sensor simulation to test existing perception
systems. As shown in Tab. IV, NeuSim achieves highest
agreement for both detection and instance segmentation.

3) Realistic Sensor Simulation: Using our reconstructed
asset from NeuSim, we can create consistent multi-sensor
simulations for self-driving. For camera simulation, we ren-
der the asset to the target view and then apply a post-
composition network [18] to seamlessly blend the actor to

Method Detection (IoU)↑ Inst. Segmentation (IoU)↑

SAMP [13] 90.39 89.58
NVDiffRec [58] 85.26 85.88
NeRF++ [5] 92.81 93.22
NeuS [6] 93.97 94.22
Ours 94.82 95.48

TABLE IV
EVALUATE DOWNSTREAM PERCEPTION TASKS ON CAMERA SIMULATION

the background. For LiDAR simulation, we use an approach
similar to [62], [63] and perform actor injection by raycasting
the asset according to the LiDAR calibration and removing
points in the real LiDAR sweep that are occluded by the
added actor. Fig. 7 (b) shows that we can generate realistic
camera and LiDAR simulations for the added actor, enabling
diverse data generation and end to end autonomy testing.

V. CONCLUSION

In this paper, we propose NeuSim, a novel approach for
3D object reconstruction and novel view synthesis from in-
the-wild camera and LiDAR data. NeuSim represents the
object geometry as a neural SDF, and the appearance with
a physics-based reflectance model. With this decomposed
representation, we can realistically and efficiently render
assets at novel views. We demonstrated that NeuSim as-
sets can be inserted into new scenarios, generate realistic
multi-sensor data, and can be used to evaluate autonomy
perception, enabling scalable and diverse simulation for self-
driving. Future work involves explicitly modelling scene
lighting [34], [64], large-scale and dynamic scene [41], [65],
[66], efficient training and real-time rendering [67], [68], and
dealing with inaccurate sensor poses [69], [70].
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